Generalised superconformal higher-spin multiplets

被引:0
|
作者
Sergei M. Kuzenko
Michael Ponds
Emmanouil S. N. Raptakis
机构
[1] The University of Western Australia,Department of Physics M013
关键词
Higher Spin Symmetry; Supergravity Models; Superspaces;
D O I
暂无
中图分类号
学科分类号
摘要
We propose generalised N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N} $$\end{document} = 1 superconformal higher-spin (SCHS) gauge multiplets of depth t, ϒαnα⋅mt\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\Upsilon}_{\alpha (n)\overset{\cdot }{\alpha }(m)}^{(t)} $$\end{document}, with n ≥ m ≥ 1. At the component level, for t > 2 they contain generalised conformal higher-spin (CHS) gauge fields with depths t − 1, t and t + 1. The supermultiplets with t = 1 and t = 2 include both ordinary and generalised CHS gauge fields. Super-Weyl and gauge invariant actions describing the dynamics of ϒαnα⋅mt\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\Upsilon}_{\alpha (n)\overset{\cdot }{\alpha }(m)}^{(t)} $$\end{document} on conformally-flat superspace backgrounds are then derived. For the case n = m = t = 1, corresponding to the maximal-depth conformal graviton supermultiplet, we extend this action to Bach-flat backgrounds. Models for superconformal non-gauge multiplets, which are expected to play an important role in the Bach-flat completions of the models for ϒαnα⋅mt\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\Upsilon}_{\alpha (n)\overset{\cdot }{\alpha }(m)}^{(t)} $$\end{document}, are also provided. Finally we show that, on Bach-flat backgrounds, requiring gauge and Weyl invariance does not always determine a model for a CHS field uniquely.
引用
收藏
相关论文
共 50 条
  • [31] Higher-spin fields in braneworlds
    Germani, C
    Kehagias, A
    NUCLEAR PHYSICS B, 2005, 725 (1-2) : 15 - 44
  • [32] Notes on Higher-Spin Diffeomorphisms
    Bekaert, Xavier
    UNIVERSE, 2021, 7 (12)
  • [33] Uniformizing higher-spin equations
    Alkalaev, K. B.
    Grigoriev, M. A.
    Skvortsov, E. D.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2015, 48 (01)
  • [34] RENORMALIZABILITY OF HIGHER-SPIN THEOREIS
    LUKIERSKI, J
    NUOVO CIMENTO, 1965, 38 (03): : 1407 - +
  • [35] COVARIANT HIGHER-SPIN EQUATIONS
    BERG, RA
    JOURNAL OF MATHEMATICAL PHYSICS, 1965, 6 (01) : 24 - &
  • [36] Comments on higher-spin holography
    Bekaert, Xavier
    Joung, Euihun
    Mourad, Jihad
    FORTSCHRITTE DER PHYSIK-PROGRESS OF PHYSICS, 2012, 60 (7-8): : 882 - 888
  • [37] On higher-spin supertranslations and superrotations
    Campoleoni, Andrea
    Francia, Dario
    Heissenberg, Carlo
    JOURNAL OF HIGH ENERGY PHYSICS, 2017, (05):
  • [38] Towards holographic higher-spin interactions: four-point functions and higher-spin exchange
    X. Bekaert
    J. Erdmenger
    D. Ponomarev
    C. Sleight
    Journal of High Energy Physics, 2015
  • [39] Towards holographic higher-spin interactions: four-point functions and higher-spin exchange
    Bekaert, X.
    Erdmenger, J.
    Ponomarev, D.
    Sleight, C.
    JOURNAL OF HIGH ENERGY PHYSICS, 2015, (03):
  • [40] Superconformal index of higher derivative N=1 multiplets in four dimensions
    Beccaria, Matteo
    Tseytlin, Arkady A.
    JOURNAL OF HIGH ENERGY PHYSICS, 2018, (10):