Strategies for detecting and identifying biological signals amidst the variation commonly found in RNA sequencing data

被引:0
|
作者
William W. Wilfinger
Robert Miller
Hamid R. Eghbalnia
Karol Mackey
Piotr Chomczynski
机构
[1] Molecular Research Center,
[2] Inc.,undefined
[3] Robert Miller Enterprises,undefined
[4] LLC,undefined
[5] University of Wisconsin-Madison,undefined
[6] University of Cincinnati,undefined
来源
BMC Genomics | / 22卷
关键词
Scaling; Rank-order; Trendline; Biological variability; Biological pathway analysis; RNA sequencing; STRING-db; Minimum value adjustment; White blood cells;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
相关论文
共 50 条
  • [41] SIEVE: identifying robust single cell variable genes for single-cell RNA sequencing data
    Zhang, Yinan
    Xie, Xiaowei
    Wu, Peng
    Zhu, Ping
    BLOOD SCIENCE, 2021, 3 (02): : 35 - 39
  • [42] SkewC: Identifying cells with skewed gene body coverage in single-cell RNA sequencing data
    Abugessaisa, Imad
    Hasegawa, Akira
    Noguchi, Shuhei
    Cardon, Melissa
    Watanabe, Kazuhide
    Takahashi, Masataka
    Suzuki, Harukazu
    Katayama, Shintaro
    Kere, Juha
    Kasukawa, Takeya
    ISCIENCE, 2022, 25 (02)
  • [43] scShapes: a statistical framework for identifying distribution shapes in single-cell RNA-sequencing data
    Dharmaratne, Malindrie
    Kulkarni, Ameya S.
    Fard, Atefeh Taherian
    Mar, Jessica C.
    GIGASCIENCE, 2023, 12
  • [44] ToNER: A tool for identifying nucleotide enrichment signals in feature-enriched RNA-seq data
    Promworn, Yuttachon
    Kaewprommal, Pavita
    Shaw, Philip J.
    Intarapanich, Apichart
    Tongsima, Sissades
    Piriyapongsa, Jittima
    PLOS ONE, 2017, 12 (05):
  • [45] Expression variation analysis for tumor heterogeneity in single-cell RNA-sequencing data
    Davis-Marcisak, Emily F.
    Orugunta, Pranay
    Stein-O'Brien, Genevieve
    Puram, Sidharth V.
    Torres, Evanthia Roussos
    Hopkins, Alexander
    Jaffee, Elizabeth M.
    Favorov, Alexander V.
    Afsari, Bahman
    Goff, Loyal A.
    Fertig, Elana J.
    CANCER RESEARCH, 2019, 79 (13)
  • [46] MitoTrace: A Computational Framework for Analyzing Mitochondrial Variation in Single-Cell RNA Sequencing Data
    Wang, Mingqiang
    Deng, Wankun
    Samuels, David C. C.
    Zhao, Zhongming
    Simon, Lukas M. M.
    GENES, 2023, 14 (06)
  • [47] Identification of altered biological processes in heterogeneous RNA-sequencing data by discretization of expression profiles
    Lauria, Andrea
    Peirone, Serena
    Del Giudice, Marco
    Priante, Francesca
    Rajan, Prabhakar
    Caselle, Michele
    Oliviero, Salvatore
    Cereda, Matteo
    NUCLEIC ACIDS RESEARCH, 2020, 48 (04) : 1730 - 1747
  • [48] Benchmarking strategies for cross-species integration of single-cell RNA sequencing data
    Yuyao Song
    Zhichao Miao
    Alvis Brazma
    Irene Papatheodorou
    Nature Communications, 14
  • [49] Benchmarking strategies for cross-species integration of single-cell RNA sequencing data
    Song, Yuyao
    Miao, Zhichao
    Brazma, Alvis
    Papatheodorou, Irene
    NATURE COMMUNICATIONS, 2023, 14 (01)
  • [50] Identifying HIF1A and HGF as two hub genes in aortic dissection and function analysis by integrating RNA sequencing and single-cell RNA sequencing data
    Li, Hai-Bing
    Liu, Chang
    Mao, Xiang-Di
    Yuan, Shu-Zheng
    Li, Li
    Cong, Xin
    FRONTIERS IN CARDIOVASCULAR MEDICINE, 2024, 11