Breathing Mode of an Anharmonically Trapped One-Dimensional Bose Gas

被引:0
|
作者
Ji-Xuan Hou
Yun-Feng Hu
Kai-Li Xue
机构
[1] Southeast University,School of Physics
来源
关键词
Ultra-cold atomic Bose gas; Lieb–Liniger model; Breathing mode;
D O I
暂无
中图分类号
学科分类号
摘要
We theoretically investigate the breathing frequency of a one-dimensional ultra-cold atomic Bose gas in the weakly and strongly interacting regimes. In view of the relevant experimental conditions, the trap considered in this work is a quadratic plus quartic potential. The local chemical potential of the Bose gas is calculated with the Lieb–Liniger model, and the equation of motion for the width of the gas is derived by using a variational approach. The breathing frequency is strongly affected by the anharmonic distortion in the strongly interaction regime while it is insensitive to the anharmonic distortion in the weakly interacting regime.
引用
收藏
页码:116 / 123
页数:7
相关论文
共 50 条
  • [41] Quantum dynamics of impurities in a one-dimensional Bose gas
    Catani, J.
    Lamporesi, G.
    Naik, D.
    Gring, M.
    Inguscio, M.
    Minardi, F.
    Kantian, A.
    Giamarchi, T.
    PHYSICAL REVIEW A, 2012, 85 (02):
  • [42] Correlation lengths of the repulsive one-dimensional Bose gas
    Patu, Ovidiu I.
    Kluemper, Andreas
    PHYSICAL REVIEW A, 2013, 88 (03)
  • [43] Extended conformal symmetry of the one-dimensional Bose gas
    Maule, M
    Sciuto, S
    MODERN PHYSICS LETTERS A, 1997, 12 (29) : 2153 - 2159
  • [44] Correlation functions of the one-dimensional attractive bose gas
    Calabrese, Pasquale
    Caux, Jean-Sebastien
    PHYSICAL REVIEW LETTERS, 2007, 98 (15)
  • [45] Interacting one-dimensional Bose gas: Beyond Bogolyubov
    Paul, P
    Sutherland, B
    PHYSICAL REVIEW A, 2000, 62 (05): : 055601 - 055601
  • [46] THERMODYNAMICS OF A ONE-DIMENSIONAL LATTICE BOSE-GAS
    BOGOLYUBOV, NM
    THEORETICAL AND MATHEMATICAL PHYSICS, 1986, 67 (03) : 614 - 622
  • [47] Statistical properties of one-dimensional attractive Bose gas
    Bienias, P.
    Pawlowski, K.
    Gajda, M.
    Rzazewski, K.
    EPL, 2011, 96 (01)
  • [48] Ideal Bose gas in steep one-dimensional traps
    Rovenchak, Andrij
    Krynytskyi, Yuri
    Fizika Nizkikh Temperatur, 2022, 48 (01): : 23 - 29
  • [49] CORRELATION LENGTH OF THE ONE-DIMENSIONAL BOSE-GAS
    BOGOLIUBOV, NM
    KOREPIN, VE
    NUCLEAR PHYSICS B, 1985, 257 (06) : 766 - 778
  • [50] Statistical mechanics of a one-dimensional δ-function Bose gas
    Wadati, M
    Kato, G
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 2001, 70 (07) : 1924 - 1930