Using the best two-observational percentile and maximum likelihood methods in a multicomponent stress-strength system to reliability estimation of inverse Weibull distribution
被引:0
|
作者:
Kazem Fayyaz Heidari
论文数: 0引用数: 0
h-index: 0
机构:Islamic Azad University,Department of Statistics, Qaemshahr Branch
Kazem Fayyaz Heidari
Einollah Deiri
论文数: 0引用数: 0
h-index: 0
机构:Islamic Azad University,Department of Statistics, Qaemshahr Branch
Einollah Deiri
Ezzatallah Baloui Jamkhaneh
论文数: 0引用数: 0
h-index: 0
机构:Islamic Azad University,Department of Statistics, Qaemshahr Branch
Ezzatallah Baloui Jamkhaneh
机构:
[1] Islamic Azad University,Department of Statistics, Qaemshahr Branch
Best two-observational percentile estimation;
Inverse Weibull distribution;
Multicomponent Stress-strength;
Reliability;
D O I:
10.1007/s41872-021-00166-z
中图分类号:
学科分类号:
摘要:
In this paper, we propose an estimate of reliability in a multicomponent system. The system has k\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$k$$\end{document} components strengths are given by independently and identically distributed random variables X1\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${X}_{1}$$\end{document}, X2\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${X}_{2}$$\end{document},…, Xk\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${X}_{k}$$\end{document} and each component is exposed to random stress Y\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\rm Y}$$\end{document}. The reliability of such a system is obtained when strength and stress variables are given by inverse Weibull (IW) distribution with scale parameters λ1\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\lambda }_{1}$$\end{document}, λ2\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\lambda }_{2}$$\end{document} and common shape parameter α\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\alpha$$\end{document}. The system reliability is estimated using maximum likelihood estimation (MLE) and the best two-observational percentile estimation (BTPE) methods in samples drawn from strength and stress distributions. Also, the asymptotic confidence interval for system reliability is obtained. The reliability estimators obtained from both methods are compared using average bias, mean squares error, and confidence interval length via Monte Carlo simulation. In the end, using two real data sets we illustrate the procedure.
机构:
Department of Statistics, School of Mathematical Sciences, CNMS, The University of Dodoma, P.O. Box 259, DodomaDepartment of Statistics, School of Mathematical Sciences, CNMS, The University of Dodoma, P.O. Box 259, Dodoma
Rao G.S.
Bhatti F.A.
论文数: 0引用数: 0
h-index: 0
机构:
National College of Business Administration and Economics, LahoreDepartment of Statistics, School of Mathematical Sciences, CNMS, The University of Dodoma, P.O. Box 259, Dodoma
Bhatti F.A.
Aslam M.
论文数: 0引用数: 0
h-index: 0
机构:
Department of Statistics, King Abdulaziz University, JeddahDepartment of Statistics, School of Mathematical Sciences, CNMS, The University of Dodoma, P.O. Box 259, Dodoma
Aslam M.
Albassam M.
论文数: 0引用数: 0
h-index: 0
机构:
Department of Statistics, King Abdulaziz University, JeddahDepartment of Statistics, School of Mathematical Sciences, CNMS, The University of Dodoma, P.O. Box 259, Dodoma