Using the best two-observational percentile and maximum likelihood methods in a multicomponent stress-strength system to reliability estimation of inverse Weibull distribution

被引:0
|
作者
Kazem Fayyaz Heidari
Einollah Deiri
Ezzatallah Baloui Jamkhaneh
机构
[1] Islamic Azad University,Department of Statistics, Qaemshahr Branch
关键词
Best two-observational percentile estimation; Inverse Weibull distribution; Multicomponent Stress-strength; Reliability;
D O I
10.1007/s41872-021-00166-z
中图分类号
学科分类号
摘要
In this paper, we propose an estimate of reliability in a multicomponent system. The system has k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k$$\end{document} components strengths are given by independently and identically distributed random variables X1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${X}_{1}$$\end{document}, X2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${X}_{2}$$\end{document},…, Xk\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${X}_{k}$$\end{document} and each component is exposed to random stress Y\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\rm Y}$$\end{document}. The reliability of such a system is obtained when strength and stress variables are given by inverse Weibull (IW) distribution with scale parameters λ1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\lambda }_{1}$$\end{document},  λ2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\lambda }_{2}$$\end{document} and common shape parameter α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha$$\end{document}. The system reliability is estimated using maximum likelihood estimation (MLE) and the best two-observational percentile estimation (BTPE) methods in samples drawn from strength and stress distributions. Also, the asymptotic confidence interval for system reliability is obtained. The reliability estimators obtained from both methods are compared using average bias, mean squares error, and confidence interval length via Monte Carlo simulation. In the end, using two real data sets we illustrate the procedure.
引用
收藏
页码:255 / 265
页数:10
相关论文
共 50 条
  • [31] Estimation of stress-strength reliability for inverse Weibull distribution under progressive type-II censoring scheme
    Yadav, Abhimanyu Singh
    Singh, Sanjay Kumar
    Singh, Umesh
    JOURNAL OF INDUSTRIAL AND PRODUCTION ENGINEERING, 2018, 35 (01) : 48 - 55
  • [32] Estimation of reliability in a multicomponent stress-strength system for the exponentiated moment-based exponential distribution
    Rao G.S.
    Bhatti F.A.
    Aslam M.
    Albassam M.
    Algorithms, 2019, 12 (02):
  • [33] Bayesian Inference of System Reliability for Multicomponent Stress-Strength Model under Marshall-Olkin Weibull Distribution
    Zhang, Liming
    Xu, Ancha
    An, Liuting
    Li, Min
    SYSTEMS, 2022, 10 (06):
  • [34] Estimation of Reliability in a Multicomponent Stress-Strength System for the Exponentiated Moment-Based Exponential Distribution
    Rao, G. Srinivasa
    Bhatti, Fiaz Ahmad
    Aslam, Muhammad
    Albassam, Mohammed
    ALGORITHMS, 2019, 12 (12)
  • [35] Burr-XII Distribution Parametric Estimation and Estimation of Reliability of Multicomponent Stress-Strength
    Rao, G. Srinivasa
    Aslam, Muhammad
    Kundu, Debasis
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2015, 44 (23) : 4953 - 4961
  • [36] Reliability estimation in multicomponent stress-strength model for generalized inverted exponential distribution
    Jia, Junmei
    Yan, Zaizai
    Song, Haohao
    Chen, Yan
    SOFT COMPUTING, 2023, 27 (02) : 903 - 916
  • [37] ESTIMATION OF RELIABILITY IN MULTICOMPONENT STRESS-STRENGTH MODEL: LOG-LOGISTIC DISTRIBUTION
    Rao, G. Srinivasa
    Kantam, R. R. L.
    ELECTRONIC JOURNAL OF APPLIED STATISTICAL ANALYSIS, 2010, 3 (02) : 75 - 84
  • [38] Multicomponent stress-strength reliability estimation based on unit generalized Rayleigh distribution
    Jha, Mayank Kumar
    Tripathi, Yogesh Mani
    Dey, Sanku
    INTERNATIONAL JOURNAL OF QUALITY & RELIABILITY MANAGEMENT, 2021, 38 (10) : 2048 - 2079
  • [39] Reliability estimation in multicomponent stress-strength model using weighted exponential-Lindley distribution
    Sharma, Sunita
    Kumar, Vinod
    JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2024, 94 (11) : 2385 - 2411
  • [40] Multicomponent Stress-Strength Reliability estimation based on Unit Generalized Exponential Distribution
    Jha, Mayank Kumar
    Dey, Sanku
    Alotaibi, Refah
    Alomani, Ghadah
    Tripathi, Yogesh Mani
    AIN SHAMS ENGINEERING JOURNAL, 2022, 13 (05)