Complex extreme points in Marcinkiewicz spaces

被引:0
|
作者
M. M. Czerwińska
A. Parrish
机构
[1] University of North Florida,Department of Mathematics and Statistics
[2] Western Governors University,General Education, Mathematics
来源
Positivity | 2015年 / 19卷
关键词
Marcinkiewicz spaces; Complex extreme points; 46B20; 46E30;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we characterize complex extreme points in Marcinkiewicz spaces MW\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$M_W$$\end{document}, with a non-increasing weight w\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$w$$\end{document}. We showed that f∈SMW\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f \in S_{M_W}$$\end{document} is a complex extreme point of the unit ball BMW\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$B_{M_W}$$\end{document} if and only if lim inft→∞{∫0tw(s)ds-∫0tf(s)ds}=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\liminf _{t\rightarrow \infty }\{\int _0^t w(s)\,ds-\int _0^t f(s)\,ds\}=0$$\end{document}. Moreover, we proved that the unit ball is the weak star closure of its complex extreme points.
引用
收藏
页码:121 / 135
页数:14
相关论文
共 50 条
  • [21] Orlicz spaces without extreme points
    Foralewski, Pawel
    Hudzik, Henryk
    Pluciennik, Ryszard
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2010, 361 (02) : 506 - 519
  • [22] EXTREME POINTS IN SPACES OF ANALYTIC FUNCTIONS
    GAMELIN, TW
    VOICHICK, M
    CANADIAN JOURNAL OF MATHEMATICS, 1968, 20 (04): : 919 - &
  • [23] Extreme points in polyhedral Banach spaces
    Carlo Alberto De Bernardi
    Israel Journal of Mathematics, 2017, 220 : 547 - 557
  • [24] STRONGLY EXTREME POINTS IN BANACH SPACES
    MCGUIGAN, R
    MANUSCRIPTA MATHEMATICA, 1971, 5 (02) : 113 - &
  • [25] A note on extreme points in dual spaces
    Juan Francisco Mena-Jurado
    Juan Carlos Navarro-Pascual
    Acta Mathematica Sinica, English Series, 2013, 29 : 471 - 476
  • [26] EXTREME POINTS FOR COMBINATORIAL BANACH SPACES
    Beanland, Kevin
    Duncan, Noah
    Holt, Michael
    Quigley, James
    GLASGOW MATHEMATICAL JOURNAL, 2019, 61 (02) : 487 - 500
  • [27] On Extreme Points of Sets in Operator Spaces and State Spaces
    Amosov, G. G.
    Bikchentaev, A. M.
    Sakbaev, V. Zh.
    PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS, 2024, 324 (01) : 4 - 17
  • [28] A Note on Extreme Points in Dual Spaces
    Francisco Mena-Jurado, Juan
    Carlos Navarro-Pascual, Juan
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2013, 29 (03) : 471 - 476
  • [29] EXTREME POINTS IN POLYHEDRAL BANACH SPACES
    De Bernardi, Carlo Alberto
    ISRAEL JOURNAL OF MATHEMATICS, 2017, 220 (02) : 547 - 557
  • [30] Extreme points and retractions in Banach spaces
    J. C. Navarro-Pascual
    Israel Journal of Mathematics, 1997, 99 : 335 - 342