Complex extreme points in Marcinkiewicz spaces

被引:0
|
作者
M. M. Czerwińska
A. Parrish
机构
[1] University of North Florida,Department of Mathematics and Statistics
[2] Western Governors University,General Education, Mathematics
来源
Positivity | 2015年 / 19卷
关键词
Marcinkiewicz spaces; Complex extreme points; 46B20; 46E30;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we characterize complex extreme points in Marcinkiewicz spaces MW\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$M_W$$\end{document}, with a non-increasing weight w\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$w$$\end{document}. We showed that f∈SMW\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f \in S_{M_W}$$\end{document} is a complex extreme point of the unit ball BMW\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$B_{M_W}$$\end{document} if and only if lim inft→∞{∫0tw(s)ds-∫0tf(s)ds}=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\liminf _{t\rightarrow \infty }\{\int _0^t w(s)\,ds-\int _0^t f(s)\,ds\}=0$$\end{document}. Moreover, we proved that the unit ball is the weak star closure of its complex extreme points.
引用
收藏
页码:121 / 135
页数:14
相关论文
共 50 条