Constraining Palatini–Horndeski theory with gravitational waves after GW170817

被引:0
|
作者
Yu-Qi Dong
Yu-Qiang Liu
Yu-Xiao Liu
机构
[1] Lanzhou University,Lanzhou Center for Theoretical Physics, Key Laboratory of Theoretical Physics of Gansu Province, School of Physical Science and Technology
[2] Lanzhou University,Institute of Theoretical Physics and Research Center of Gravitation
关键词
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we investigate the possible parameter space of Palatini–Horndeski theory with gravitational waves in a spatially flat Universe. We develop a general method for obtaining the speed of gravitational waves in the Palatini formalism in the cosmological background and we find that if the theory satisfies the following condition: in any spatially flat cosmological background, the tensor gravitational wave speed is the speed of light c, then only S=∫d4x-g[K(ϕ,X)-G3(ϕ,X)□~ϕ+G4(ϕ)R~]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S = \int d^4x \sqrt{-g} \big [K(\phi ,X)-G_{3}(\phi ,X){{\tilde{\Box }}}\phi +G_{4}(\phi ){\tilde{R}}\big ]$$\end{document} is left as the possible action in Palatini–Horndeski theory. We also find that when G5(ϕ,X)≠0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G_{5}(\phi ,X)\ne 0$$\end{document}, the tensor part of the connection will propagate and there are two different tensor gravitational wave speeds.
引用
收藏
相关论文
共 50 条
  • [21] Constraints on Einstein-aether theory after GW170817
    Oost, Jacob
    Mukohyama, Shinji
    Wang, Anzhong
    PHYSICAL REVIEW D, 2018, 97 (12)
  • [22] Gravitational wave friction in light of GW170817 and GW190521
    Mastrogiovanni, S.
    Haegel, L.
    Karathanasis, C.
    Hernandez, I. Magana
    Steer, D. A.
    JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS, 2021, (02):
  • [23] Calibrating gravitational-wave detectors with GW170817
    Essick, Reed
    Holz, Daniel E.
    CLASSICAL AND QUANTUM GRAVITY, 2019, 36 (12)
  • [24] Electromagnetic counterparts to the gravitational wave event GW170817
    Geng JinJun
    Xiao Di
    Wang ShanQin
    Dai Zigao
    SCIENTIA SINICA-PHYSICA MECHANICA & ASTRONOMICA, 2018, 48 (07)
  • [25] Constraining Horndeski theory with gravitational waves from coalescing binaries
    Quartin, Miguel
    Tsujikawa, Shinji
    Amendola, Luca
    Sturani, Riccardo
    JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS, 2023, (08):
  • [26] Constraining extra-spatial dimensions with observations of GW170817
    Chakravarti, Kabir
    Chakraborty, Sumanta
    Phukon, Khun Sang
    Bose, Sukanta
    SenGupta, Soumitra
    CLASSICAL AND QUANTUM GRAVITY, 2020, 37 (10)
  • [27] GW170817: The key to the door of multi-messenger astronomy including gravitational waves
    He Gao
    Science China(Physics,Mechanics & Astronomy), 2018, (05) : 85 - 88
  • [28] GW170817: The key to the door of multi-messenger astronomy including gravitational waves
    He Gao
    Science China Physics, Mechanics & Astronomy, 2018, 61
  • [29] GW170817: The key to the door of multi-messenger astronomy including gravitational waves
    Gao, He
    SCIENCE CHINA-PHYSICS MECHANICS & ASTRONOMY, 2018, 61 (05)
  • [30] Dark energy scenario consistent with GW170817 in theories beyond Horndeski gravity
    Kase, Ryotaro
    Tsujikawa, Shinji
    PHYSICAL REVIEW D, 2018, 97 (10)