The temporal structure of a runaway electron beam generated in air at atmospheric pressure

被引:0
|
作者
D. V. Rybka
V. F. Tarasenko
A. G. Burachenko
E. V. Balzovskii
机构
[1] Russian Academy of Sciences,Institute of High
来源
Technical Physics Letters | 2012年 / 38卷
关键词
Runaway Electron; Runaway Electron Beam; Current Pulse Duration; Beam Current Pulse; Supershort Avalanche Electron Beam;
D O I
暂无
中图分类号
学科分类号
摘要
Supershort avalanche electron beams (SAEBs) generated in air at atmospheric pressure have been studied with picosecond time resolution. It is established that an SAEB has a complicated structure that depends on the interelectrode gap width and cathode design. In a gas-filled diode with a small gap width, an SAEB current pulse with a full width at half maximum (FWHM) of ∼25 ps has been observed behind a collimator with a hole diameter of 1 mm. As the gap width is increased or decreased relative to the optimum value that corresponds to the maximum beam current, the SAEB current pulse shape changes and pulses with two peaks are more likely detected. The two-peak SAEB current pulse shape is retained behind aluminum foil with a thickness of 60 and 110 μm.
引用
收藏
页码:657 / 660
页数:3
相关论文
共 50 条
  • [31] An efficient cathode for generating an supershort avalanche electron beam in air at atmospheric pressure
    Kostyrya, I. D.
    Baksht, E. Kh
    Tarasenko, V. F.
    INSTRUMENTS AND EXPERIMENTAL TECHNIQUES, 2010, 53 (04) : 545 - 548
  • [32] Temporal structure of the fast electron beam generated in the pseudospark discharge with external triggering
    Korolev, YD
    Frants, OB
    Geyman, VG
    Landl, NV
    Ivashov, RV
    Shemyakin, IA
    Bischoff, RE
    Frank, K
    Petzenhauser, IJ
    IEEE TRANSACTIONS ON PLASMA SCIENCE, 2005, 33 (05) : 1648 - 1653
  • [33] Time evolution of nanosecond runaway discharges in air and helium at atmospheric pressure
    Yatom, S.
    Vekselman, V.
    Krasik, Ya. E.
    PHYSICS OF PLASMAS, 2012, 19 (12)
  • [34] Mechanism of runaway electron generation in nanosecond pulsed plate-plate discharge at atmospheric-pressure air
    Xiao, Jiang-Ping
    Dong, Dai
    Tarasenko, Victor F.
    Tao, Shao
    ACTA PHYSICA SINICA, 2023, 72 (10)
  • [35] Beam electron energy distribution at a volume nanosecond discharge in atmospheric-pressure air
    Tarasenko, V. F.
    Kostyrya, I. D.
    Petin, V. K.
    Shlyakhtun, S. V.
    TECHNICAL PHYSICS, 2006, 51 (12) : 1576 - 1585
  • [36] The amplitude and current pulse duration of a supershort avalanche electron beam in air at atmospheric pressure
    Kostyrya, I. D.
    Rybka, D. V.
    Tarasenko, V. F.
    INSTRUMENTS AND EXPERIMENTAL TECHNIQUES, 2012, 55 (01) : 72 - 77
  • [37] Beam electron energy distribution at a volume nanosecond discharge in atmospheric-pressure air
    V. F. Tarasenko
    I. D. Kostyrya
    V. K. Petin
    S. V. Shlyakhtun
    Technical Physics, 2006, 51 : 1576 - 1585
  • [38] Nitric oxide generated by atmospheric pressure air microplasma
    Matsuo, Keita
    Yoshida, Hidekazu
    Choi, Jaegu
    Hosseini, S. Hamid R.
    Namihira, Takao
    Katsuki, Sunao
    Akiyama, Hidenori
    2009 IEEE PULSED POWER CONFERENCE, VOLS 1 AND 2, 2009, : 996 - 1000
  • [39] The amplitude and current pulse duration of a supershort avalanche electron beam in air at atmospheric pressure
    I. D. Kostyrya
    D. V. Rybka
    V. F. Tarasenko
    Instruments and Experimental Techniques, 2012, 55 : 72 - 77
  • [40] X-ray radiation and runaway electron beams generated during discharges in atmospheric-pressure air at rise times of voltage pulse of 500 and 50 ns
    Sorokin, D. A.
    Tarasenko, V. F.
    Zhang, Cheng
    Kostyrya, I. D.
    Qiu, Jintao
    Yan, Ping
    Baksht, E. Kh.
    Shao, Tao
    LASER AND PARTICLE BEAMS, 2018, 36 (02) : 186 - 194