Bifurcation phenomena from standing pulse solutions in some reaction-diffusion systems

被引:10
|
作者
Ikeda H. [1 ]
Ikeda T. [2 ]
机构
[1] Department of Mathematics, Toyama University
[2] Department of Applied Mathematics and Informatics, Ryukoku University
关键词
Hopf bifurcation; Reaction-diffusion system; Singular perturbation; Stability; Standing pulses;
D O I
10.1023/A:1009098719440
中图分类号
学科分类号
摘要
Bifurcation phenomena from standing pulse solutions of the problem ετut = ε2uxx, + f(u, v), v t = vxx + g(u, v) is considered. ε(>0) is a sufficiently small parameter and τ is a positive one. It is shown that there exist two types of destabilization of standing pulse solutions when τ decreases. One is the appearance of travelling pulse solutions via the static bifurcation and the other is that of in-phase breathers via the Hopf bifurcation. Furthermore which type of destabilization occurs first with decreasing τ is discussed for the piecewise linear nonlinearities f and g. © 2000 Plenum Publishing Corporation.
引用
收藏
页码:117 / 167
页数:50
相关论文
共 50 条
  • [11] WAVE PHENOMENA IN REACTION-DIFFUSION SYSTEMS
    Steinbock, Oliver
    Engel, Harald
    [J]. ENGINEERING OF CHEMICAL COMPLEXITY, 2013, 11 : 147 - 167
  • [12] Stability, bifurcations and edge oscillations in standing pulse solutions to an inhomogeneous reaction-diffusion system
    Rubin, JE
    [J]. PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 1999, 129 : 1033 - 1079
  • [13] Bifurcation Characteristics of Fractional Reaction-Diffusion Systems
    Datsko, Bohdan
    Gafiychuk, Vasyl
    Luchko, Yuri
    [J]. 9TH INTERNATIONAL CONFERENCE ON MATHEMATICAL PROBLEMS IN ENGINEERING, AEROSPACE AND SCIENCES (ICNPAA 2012), 2012, 1493 : 290 - 297
  • [14] BIFURCATION AND MONOTONICITY IN COMPETITION REACTION-DIFFUSION SYSTEMS
    DU, YH
    BROWN, KJ
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1994, 23 (01) : 1 - 13
  • [15] Bifurcation to spiral waves in reaction-diffusion systems
    Scheel, A
    [J]. SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1998, 29 (06) : 1399 - 1418
  • [16] CLASSIFICATION IN BIFURCATION THEORY AND REACTION-DIFFUSION SYSTEMS
    SCHIFFMANN, Y
    [J]. PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1980, 64 (03): : 89 - 169
  • [17] BIFURCATION TO TRAVELING SPOTS IN REACTION-DIFFUSION SYSTEMS
    KRISCHER, K
    MIKHAILOV, A
    [J]. PHYSICAL REVIEW LETTERS, 1994, 73 (23) : 3165 - 3168
  • [18] BIFURCATION PATTERN IN REACTION-DIFFUSION DISSIPATIVE SYSTEMS
    JANSSEN, R
    HLAVACEK, V
    VANROMPAY, P
    [J]. ZEITSCHRIFT FUR NATURFORSCHUNG SECTION A-A JOURNAL OF PHYSICAL SCIENCES, 1983, 38 (04): : 487 - 492
  • [19] Local maxima of solutions to some nonsymmetric reaction-diffusion systems
    Nakagawa, Junichi
    Nakamura, Gen
    Sasayama, Satoshi
    Wang, Haibing
    [J]. MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2014, 37 (05) : 752 - 767
  • [20] Symmetries and Solutions for Some Classes of Advective Reaction-Diffusion Systems
    Torrisi, Mariano
    Tracina, Rita
    [J]. SYMMETRY-BASEL, 2022, 14 (10):