Metric invariants in dynamical systems

被引:1
|
作者
Jiang Y. [1 ,2 ,3 ]
机构
[1] Department of Mathematics, Queens College, City University of New York, Flushing
[2] Department of Mathematics, Graduate School, City University of New York, New York, NY 10016
[3] Academy of Mathematics and Systems Science, Chinese Academy of Sciences
基金
美国国家科学基金会;
关键词
Expanding circle endomorphism; Linear model; Scaling function;
D O I
10.1007/s10884-005-5403-4
中图分类号
学科分类号
摘要
The scaling function and the linear model for a circle endomorphism are two important smooth invariants under conjugacy. We discuss these two invariants and some relations between them. Furthermore, we use these relations to discuss some realization results in this direction. The discussion in this paper avoids quasiconformal mapping theory and Gibbs theory and g-measure theory, which are used in our previous discussions, therefore, is straightforward and simple. © Springer Science+Business Media, Inc. 2005.
引用
收藏
页码:51 / 71
页数:20
相关论文
共 50 条
  • [21] On Invariants and Invariant Hypersurfaces of Complex Discrete Dynamical Systems
    V. Yu. Tyshchenko
    [J]. Russian Mathematics, 2021, 65 : 39 - 48
  • [22] Spectral invariants of periodic nonautonomous discrete dynamical systems
    Alves, Joao Ferreira
    Malek, Michal
    Silva, Luis
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2015, 430 (01) : 85 - 97
  • [23] Geometric invariants of smooth low dimensional dynamical systems
    Solis, F
    [J]. BOLETIN DE LA SOCIEDAD MATEMATICA MEXICANA, 1999, 5 (01): : 163 - 177
  • [24] Metric entropy of capacity preserving dynamical systems
    Gu, Lijuan
    Li, Zhiming
    [J]. FUZZY SETS AND SYSTEMS, 2023, 457 : 66 - 79
  • [25] Euler polygonal method for metric dynamical systems
    Nieto, Juan J.
    Rodriguez-Lopez, Rosana
    [J]. INFORMATION SCIENCES, 2007, 177 (20) : 4256 - 4270
  • [26] The reduction of discrete dynamical systems in metric space
    Reinfelds, A
    [J]. ADVANCES IN DIFFERENCE EQUATIONS-BOOK, 1997, : 525 - 536
  • [27] The Interrelation of Motions of Dynamical Systems in a Metric Space
    A. P. Afanas’ev
    S. M. Dzyuba
    [J]. Lobachevskii Journal of Mathematics, 2022, 43 : 3414 - 3419
  • [28] Quasi-metric hyper dynamical systems
    Niknezhad, Sh.
    Molaei, M. R.
    [J]. ITALIAN JOURNAL OF PURE AND APPLIED MATHEMATICS, 2023, (49): : 490 - 495
  • [29] The Interrelation of Motions of Dynamical Systems in a Metric Space
    Afanas'ev, A. P.
    Dzyuba, S. M.
    [J]. LOBACHEVSKII JOURNAL OF MATHEMATICS, 2022, 43 (12) : 3414 - 3419
  • [30] ASYMPTOTIC PERIOD IN DYNAMICAL SYSTEMS IN METRIC SPACES
    Gryszka, Karol
    [J]. COLLOQUIUM MATHEMATICUM, 2015, 139 (02) : 245 - 257