DNS of Turbulent Premixed Ammonia/Hydrogen Flames: The Impact of Thermo-Diffusive Effects

被引:0
|
作者
Jessica Gaucherand
Davide Laera
Corinna Schulze-Netzer
Thierry Poinsot
机构
[1] CERFACS,Department of Energy and Process Engineering
[2] Norwegian University of Science and Technology,Department of Mechanics, Mathematics and Management
[3] Polytechnic University of Bari,undefined
[4] IMFT,undefined
[5] Allée du Professeur Camille Soula,undefined
来源
关键词
Direct numerical simulation; Premixed turbulent flame; Ammonia; Hydrogen; Thermo-diffusive instabilities;
D O I
暂无
中图分类号
学科分类号
摘要
Direct Numerical Simulations (DNS) of three-dimensional premixed turbulent hydrogen-air flames enriched with 19%, 36%, 44% and 57% of NH3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_3$$\end{document} (in volume) are performed. Starting from an equivalence ratio of 0.44 for the case with 19% of NH3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_3$$\end{document}, richer mixtures of ϕ=\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\phi =$$\end{document} 0.54, 0.69 and 0.95 are considered when increasing NH3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_3$$\end{document} concentration to obtain comparable laminar flame speeds, i.e., 0.17 m/s for 19% and 36 % NH3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_3$$\end{document} enriched case, and 0.30 m/s when NH3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_3$$\end{document} concentration is increased to 44 and 57%. The composition and characteristics of the studied mixtures enable to investigate the effects of thermo-diffusivity in a turbulent flow and the role of chemistry and stretch effects in the development of the flames. Given a composition of ammonia and hydrogen and an equivalence ratio, a predictive method is described to identify compositions where thermo-diffusive effects impact the flame and predict the stretch factors. Two maps are proposed to achieve this: the first one is based on the Markstein number and the second one is based on the ratio of consumption speed of strained flames over the laminar unstretched flame speed. This prediction can guide model selection and help manufacturers and experimentalists identify relevant operating points based on desired energy output.
引用
收藏
页码:587 / 614
页数:27
相关论文
共 50 条
  • [21] FLAME TRANSFER FUNCTIONS FOR TURBULENT, PREMIXED, AMMONIA-HYDROGEN-NITROGEN-AIR FLAMES
    Wiseman, Samuel
    Gruber, Andrea
    Dawson, James R.
    PROCEEDINGS OF ASME TURBO EXPO 2022: TURBOMACHINERY TECHNICAL CONFERENCE AND EXPOSITION, GT2022, VOL 3B, 2022,
  • [22] Flame Transfer Functions for Turbulent, Premixed, Ammonia-Hydrogen-Nitrogen-Air Flames
    Wiseman, Samuel
    Gruber, Andrea
    Dawson, James R.
    JOURNAL OF ENGINEERING FOR GAS TURBINES AND POWER-TRANSACTIONS OF THE ASME, 2023, 145 (03):
  • [23] DNS of turbulent premixed CO/H2/air flames
    Lange, M
    HIGH PERFORMANCE COMPUTING IN SCIENCE AND ENGINEERING'03, 2003, : 211 - 224
  • [24] Can flamelet manifolds capture the interactions of thermo-diffusive instabilities and turbulence in lean hydrogen flames?-An a-priori analysis
    Boettler, Hannes
    Kaddar, Driss
    Karpowski, T. Jeremy P.
    Ferraro, Federica
    Scholtissek, Arne
    Nicolai, Hendrik
    Hasse, Christian
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2024, 56 : 1397 - 1407
  • [25] Parallel DNS of turbulent non-premixed flames with adaptive chemistry
    Lange, M
    Warnatz, J
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 2001, 81 : S543 - S544
  • [26] An Analysis of Local Quantities of Turbulent Premixed Flames Using DNS Databases
    Tsuboi, Kazuya
    Nishiki, Shinnosuke
    Hasegawa, Tatsuya
    JOURNAL OF THERMAL SCIENCE AND TECHNOLOGY, 2008, 3 (01): : 103 - 111
  • [27] An analysis of local quantities of turbulent premixed flames using DNS databases
    Tsuboi, Kazuya
    Nishiki, Shinnosuke
    Hasegawa, Tatsuya
    PROCEEDINGS OF THE ASME/JSME THERMAL ENGINEERING SUMMER HEAT TRANSFER CONFERENCE 2007, VOL 1, 2007, : 623 - 629
  • [28] DNS OF TURBULENT PREMIXED FLAMES AND HEAT TRANSFER IN A CONSTANT VOLUME VESSEL
    Fukushima, Naoya
    Tsunemi, Akihiko
    Shimura, Masayasu
    Shim, Youngsam
    Tanahashi, Mamoru
    Miyauchi, Toshio
    PROCEEDINGS OF THE ASME/JSME 8TH THERMAL ENGINEERING JOINT CONFERENCE 2011, VOL 2, 2011, : 749 - 756
  • [29] Stretch effects on the burning velocity of turbulent premixed hydrogen/air flames
    Chen, JH
    Im, HG
    PROCEEDINGS OF THE COMBUSTION INSTITUTE, 2000, 28 (01) : 211 - 218
  • [30] INTERACTION EFFECTS IN TURBULENT PREMIXED FLAMES
    BRAY, KNC
    LIBBY, PA
    PHYSICS OF FLUIDS, 1976, 19 (11) : 1687 - 1701