Trails of triples in partial triple systems

被引:0
|
作者
Charles J. Colbourn
Daniel Horsley
Chengmin Wang
机构
[1] Arizona State University,Computing, Informatics, and Decision Systems Engineering
[2] Jiangnan University,School of Science
来源
关键词
Steiner triple system; Resolvable triple system; Kirkman triple system; Hanani triple system; Kirkman signal set; 05B07;
D O I
暂无
中图分类号
学科分类号
摘要
Given v, t, and m, does there exist a partial Steiner triple system of order v with t triples whose triples can be ordered so that any m consecutive triples are pairwise disjoint? Given v, t, and m1, m2, . . . , ms with \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${t = \sum_{i=1}^s m_i}$$\end{document} , does there exist a partial Steiner triple system with t triples whose triples can be partitioned into partial parallel classes of sizes m1, . . . , ms? An affirmative answer to the first question gives an affirmative answer to the second when mi ≤ m for each \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${i \in \{1,2,\ldots,s\}}$$\end{document} . These questions arise in the analysis of erasure codes for disk arrays and that of codes for unipolar communication, respectively. A complete solution for the first problem is given when m is at most \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\frac{1}{3}\left(v-(9v)^{2/3}\right)+{O}\left(v^{1/3}\right)}$$\end{document} .
引用
收藏
页码:199 / 212
页数:13
相关论文
共 50 条
  • [31] THE STRONG CHROMATIC NUMBER OF PARTIAL TRIPLE-SYSTEMS
    COLBOURN, CJ
    JUNGNICKEL, D
    ROSA, A
    DISCRETE APPLIED MATHEMATICS, 1988, 20 (01) : 31 - 38
  • [32] Embedding partial extended triple systems when λ ≤ 2
    Raines, ME
    Rodger, CA
    ARS COMBINATORIA, 1999, 53 : 33 - 72
  • [33] Complementary partial resolution squares for Steiner triple systems
    Dinitz, JH
    Lamken, ER
    Ling, ACH
    DISCRETE MATHEMATICS, 2003, 261 (1-3) : 243 - 254
  • [34] Maximum partial triple systems on 16 and 17 points
    Demirkale, Fatih
    Donovan, Diane
    Grannell, Mike
    UTILITAS MATHEMATICA, 2020, 114 : 255 - 276
  • [35] QUADRATIC LEAVES OF MAXIMAL PARTIAL TRIPLE-SYSTEMS
    COLBOURN, CJ
    ROSA, A
    GRAPHS AND COMBINATORICS, 1986, 2 (04) : 317 - 337
  • [36] A class of partial triple systems with applications in survey sampling
    Colbourn, CJ
    Ling, ACH
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 1998, 27 (04) : 1009 - 1018
  • [37] REALIZING SMALL LEAVES OF PARTIAL TRIPLE-SYSTEMS
    COLBOURN, CJ
    ARS COMBINATORIA, 1987, 23A : 91 - 94
  • [38] Search and test algorithms for triple product property triples
    Hedtke, Ivo
    Murthy, Sandeep
    GROUPS COMPLEXITY CRYPTOLOGY, 2012, 4 (01) : 111 - 133
  • [39] GENERALIZED PYTHAGOREAN TRIPLES AND PYTHAGOREAN TRIPLE PRESERVING MATRICES
    Tikoo, Mohan
    Wang, Haohao
    MISSOURI JOURNAL OF MATHEMATICAL SCIENCES, 2009, 21 (01) : 3 - 12
  • [40] Local triple derivations on C*-algebras and JB*-triples
    Burgos, Maria
    Fernandez-Polo, Francisco J.
    Peralta, Antonio M.
    BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2014, 46 : 709 - 724