共 50 条
Trails of triples in partial triple systems
被引:0
|作者:
Charles J. Colbourn
Daniel Horsley
Chengmin Wang
机构:
[1] Arizona State University,Computing, Informatics, and Decision Systems Engineering
[2] Jiangnan University,School of Science
来源:
关键词:
Steiner triple system;
Resolvable triple system;
Kirkman triple system;
Hanani triple system;
Kirkman signal set;
05B07;
D O I:
暂无
中图分类号:
学科分类号:
摘要:
Given v, t, and m, does there exist a partial Steiner triple system of order v with t triples whose triples can be ordered so that any m consecutive triples are pairwise disjoint? Given v, t, and m1, m2, . . . , ms with \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${t = \sum_{i=1}^s m_i}$$\end{document} , does there exist a partial Steiner triple system with t triples whose triples can be partitioned into partial parallel classes of sizes m1, . . . , ms? An affirmative answer to the first question gives an affirmative answer to the second when mi ≤ m for each \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${i \in \{1,2,\ldots,s\}}$$\end{document} . These questions arise in the analysis of erasure codes for disk arrays and that of codes for unipolar communication, respectively. A complete solution for the first problem is given when m is at most \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\frac{1}{3}\left(v-(9v)^{2/3}\right)+{O}\left(v^{1/3}\right)}$$\end{document} .
引用
收藏
页码:199 / 212
页数:13
相关论文