A gene expression signature identifies two prognostic subgroups of basal breast cancer

被引:0
|
作者
Renaud Sabatier
Pascal Finetti
Nathalie Cervera
Eric Lambaudie
Benjamin Esterni
Emilie Mamessier
Agnès Tallet
Christian Chabannon
Jean-Marc Extra
Jocelyne Jacquemier
Patrice Viens
Daniel Birnbaum
François Bertucci
机构
[1] Centre de Recherche en Cancérologie de Marseille,Département d’Oncologie Moléculaire
[2] UMR891 Inserm,Département d’Oncologie Médicale
[3] Institut Paoli-Calmettes,Département de Chirurgie
[4] Institut Paoli Calmettes,Département de Radiothérapie
[5] Centre de Recherche en Cancérologie de Marseille,Département d’Anatomopathologie
[6] UMR891 Inserm,undefined
[7] Institut Paoli-Calmettes,undefined
[8] Centre de Recherche en Cancérologie de Marseille,undefined
[9] UMR891 Inserm,undefined
[10] Bureau d’Etudes Cliniques,undefined
[11] Institut Paoli-Calmettes,undefined
[12] Centre de Recherche en Cancérologie de Marseille,undefined
[13] UMR891 Inserm,undefined
[14] Centre d’Immunologie de Marseille-Luminy,undefined
[15] Institut Paoli-Calmettes,undefined
[16] Centre de Recherche en Cancérologie de Marseille,undefined
[17] UMR891 Inserm,undefined
[18] Centre de Ressources Biologiques,undefined
[19] Institut Paoli-Calmettes,undefined
[20] Centre de Recherche en Cancérologie de Marseille,undefined
[21] UMR891 Inserm,undefined
[22] Université de la Méditerranée,undefined
[23] Institut Paoli-Calmettes,undefined
[24] Centre de Recherche en Cancérologie de Marseille,undefined
[25] UMR891 Inserm,undefined
来源
关键词
Basal breast cancer; DNA microarrays; Medullary; Prognosis;
D O I
暂无
中图分类号
学科分类号
摘要
Prognosis of basal breast cancers is poor but heterogeneous. Medullary breast cancers (MBC) display a basal profile, but a favorable prognosis. We hypothesized that a previously published 368-gene expression signature associated with MBC might serve to define a prognostic classifier in basal cancers. We collected public gene expression and histoclinical data of 2145 invasive early breast adenocarcinomas. We developed a Support Vector Machine (SVM) classifier based on this 368-gene list in a learning set, and tested its predictive performances in an independent validation set. Then, we assessed its prognostic value and that of six prognostic signatures for disease-free survival (DFS) in the remaining 2034 samples. The SVM model accurately classified all MBC samples in the learning and validation sets. A total of 466 cases were basal across other sets. The SVM classifier separated them into two subgroups, subgroup 1 (resembling MBC) and subgroup 2 (not resembling MBC). Subgroup 1 exhibited 71% 5-year DFS, whereas subgroup 2 exhibited 50% (P = 9.93E-05). The classifier outperformed the classical prognostic variables in multivariate analysis, conferring lesser risk for relapse in subgroup 1 (HR = 0.52, P = 3.9E-04). This prognostic value was specific to the basal subtype, in which none of the other prognostic signatures was informative. Ontology analysis revealed effective immune response (IR), enhanced tumor cell apoptosis, elevated levels of metastasis-inhibiting factors and low levels of metastasis-promoting factors in the good-prognosis subgroup, and a more developed cell migration system in the poor-prognosis subgroup. In conclusion, based on this 368-gene SVM model derived from an MBC signature, basal breast cancers were classified in two prognostic subgroups, suggesting that MBC and basal breast cancers share similar molecular alterations associated with aggressiveness. This signature could help define the prognosis, adapt the systemic treatment, and identify new therapeutic targets.
引用
收藏
页码:407 / 420
页数:13
相关论文
共 50 条
  • [1] A gene expression signature identifies two prognostic subgroups of basal breast cancer
    Sabatier, Renaud
    Finetti, Pascal
    Cervera, Nathalie
    Lambaudie, Eric
    Esterni, Benjamin
    Mamessier, Emilie
    Tallet, Agnes
    Chabannon, Christian
    Extra, Jean-Marc
    Jacquemier, Jocelyne
    Viens, Patrice
    Birnbaum, Daniel
    Bertucci, Francois
    BREAST CANCER RESEARCH AND TREATMENT, 2011, 126 (02) : 407 - 420
  • [2] A Stemness and EMT Based Gene Expression Signature Identifies Phenotypic Plasticity and is A Predictive but Not Prognostic Biomarker for Breast Cancer
    Akbar, Muhammad Waqas
    Isbilen, Murat
    Belder, Nevin
    Demirkol Canli, Secil
    Kucukkaraduman, Baris
    Turk, Can
    Sahin, Ozgur
    Gure, Ali Osmay
    JOURNAL OF CANCER, 2020, 11 (04): : 949 - 961
  • [4] Genomic analysis identifies novel prognostic signature for breast cancer
    Wilson, Hannah
    BIOMARKERS IN MEDICINE, 2013, 7 (03) : 396 - 396
  • [5] Tumor microenvironment characterization in triple-negative breast cancer identifies prognostic gene signature
    Qin, Yan
    Deng, Jiehua
    Zhang, Lihua
    Yuan, Jiaxing
    Yang, Huawei
    Li, Qiuyun
    AGING-US, 2021, 13 (04): : 5485 - 5505
  • [6] Expression and potential prognostic value of histone family gene signature in breast cancer
    Xie, Wenting
    Zhang, Jiajia
    Zhong, Peng
    Qin, Shanshan
    Zhang, Han
    Fan, Xin
    Yin, Yuzhen
    Liang, Ruipeng
    Han, Yali
    Liao, Yina
    Yu, Xiaqing
    Long, Huideng
    Lv, Zhongwei
    Ma, Chao
    Yu, Fei
    EXPERIMENTAL AND THERAPEUTIC MEDICINE, 2019, 18 (06) : 4893 - 4903
  • [7] Stromal signature identifies basal breast cancers
    Wennmalm, Kristian
    Ostman, Arne
    Bergh, Jonas
    NATURE MEDICINE, 2009, 15 (03) : 237 - 238
  • [8] Stromal signature identifies basal breast cancers
    Greg Finak
    Nicholas Bertos
    Michael Hallett
    Morag Park
    Nature Medicine, 2009, 15 : 238 - 238
  • [9] Stromal signature identifies basal breast cancers
    Kristian Wennmalm
    Arne Östman
    Jonas Bergh
    Nature Medicine, 2009, 15 : 237 - 238
  • [10] Extracellular matrix signature identifies breast cancer subgroups with different clinical outcome
    Bergamaschi, A.
    Tagliabue, E.
    Sorlie, T.
    Naurne, B.
    Triulzi, T.
    Orlandi, R.
    Russnes, H. G.
    Nesland, J. M.
    Tammi, R.
    Auvinen, P.
    Kosma, V-M
    Menard, S.
    Borresen-Dale, A-L
    JOURNAL OF PATHOLOGY, 2008, 214 (03): : 357 - 367