On graphs with equal total domination and Grundy total domination numbers

被引:0
|
作者
Tanja Dravec
Marko Jakovac
Tim Kos
Tilen Marc
机构
[1] University of Maribor,Faculty of Natural Sciences and Mathematics
[2] Institute of Mathematics,undefined
[3] Physics and Mechanics,undefined
[4] Faculty of Mathematics and Physics,undefined
来源
Aequationes mathematicae | 2022年 / 96卷
关键词
Total domination number; Grundy total domination number; Bipartite graphs; Orthogonal array; Finite projective planes; Primary 05C69; Secondary 05B15;
D O I
暂无
中图分类号
学科分类号
摘要
A sequence (v1,…,vk)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(v_1,\ldots ,v_k)$$\end{document} of vertices in a graph G without isolated vertices is called a total dominating sequence if every vertex vi\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$v_i$$\end{document} in the sequence totally dominates at least one vertex that was not totally dominated by {v1,…,vi-1}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\{v_1,\ldots , v_{i-1}\}$$\end{document} and {v1,…,vk}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\{v_1,\ldots ,v_k\}$$\end{document} is a total dominating set of G. The length of a shortest such sequence is the total domination number of G (γt(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma _{t}(G)$$\end{document}), while the length of a longest such sequence is the Grundy total domination number of G (γgrt(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma _{gr}^t(G)$$\end{document}). In this paper we study graphs with equal total and Grundy total domination numbers. We characterize bipartite graphs with both total and Grundy total dominations number equal to 4, and show that there is no connected chordal graph G with γt(G)=γgrt(G)=4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma _{t}(G)=\gamma _{gr}^t(G)=4$$\end{document}. The main result of the paper is a characterization of bipartite graphs with γt(G)=γgrt(G)=6\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma _{t}(G)=\gamma _{gr}^t(G)=6$$\end{document} proved by establishing a surprising correspondence between the existence of such graphs and a classical but still open problem of the existence of certain finite projective planes.
引用
收藏
页码:137 / 146
页数:9
相关论文
共 50 条
  • [31] TOTAL DOMINATION IN GRAPHS
    COCKAYNE, EJ
    DAWES, RM
    HEDETNIEMI, ST
    [J]. NETWORKS, 1980, 10 (03) : 211 - 219
  • [32] Total domination in graphs
    Arumugam, S
    Thuraiswamy, A
    [J]. ARS COMBINATORIA, 1996, 43 : 89 - 92
  • [33] On α-total domination in graphs
    Henning, Michael A.
    Rad, Nader Jafari
    [J]. DISCRETE APPLIED MATHEMATICS, 2012, 160 (7-8) : 1143 - 1151
  • [34] Total Roman domination and total domination in unit disk graphs
    Rout, Sasmita
    Mishra, Pawan Kumar
    Das, Gautam Kumar
    [J]. COMMUNICATIONS IN COMBINATORICS AND OPTIMIZATION, 2024,
  • [35] Cactus graphs with equal domination and complementary tree domination numbers
    Krishnakumari, B.
    Venkatakrishnan, Y. B.
    Ayyaswawy, S. K.
    [J]. ARS COMBINATORIA, 2018, 139 : 229 - 235
  • [36] ON GRAPHS WITH EQUAL DOMINATION AND COVERING NUMBERS
    VOLKMANN, L
    [J]. DISCRETE APPLIED MATHEMATICS, 1994, 51 (1-2) : 211 - 217
  • [37] Signed edge majority total domination numbers in graphs
    Karami, H.
    Sheikholeslami, S. M.
    Khodkar, Abdollah
    [J]. ARS COMBINATORIA, 2012, 105 : 375 - 385
  • [38] Signed total Roman domination and domatic numbers in graphs
    Guo, Yubao
    Volkmann, Lutz
    Wang, Yun
    [J]. Applied Mathematics and Computation, 2025, 487
  • [39] TWIN MINUS TOTAL DOMINATION NUMBERS IN DIRECTED GRAPHS
    Dehgardi, Nasrin
    Atapour, Maryam
    [J]. DISCUSSIONES MATHEMATICAE GRAPH THEORY, 2017, 37 (04) : 989 - 1004
  • [40] The minus total k-domination numbers in graphs
    Dayap, Jonecis
    Dehgardi, Nasrin
    Asgharsharghi, Leila
    Sheikholeslami, Seyed Mahmoud
    [J]. DISCRETE MATHEMATICS ALGORITHMS AND APPLICATIONS, 2022, 14 (05)