Electro-thermal actuation in percolative ferroelectric polymer nanocomposites

被引:0
|
作者
Yang Liu
Yao Zhou
Hancheng Qin
Tiannan Yang
Xin Chen
Li Li
Zhubing Han
Ke Wang
Bing Zhang
Wenchang Lu
Long-Qing Chen
J. Bernholc
Qing Wang
机构
[1] Huazhong University of Science and Technology,State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering
[2] The Pennsylvania State University,Department of Materials Science and Engineering
[3] North Carolina State University,Department of Physics
[4] The Pennsylvania State University,Materials Research Institute
来源
Nature Materials | 2023年 / 22卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
The interconversion between electrical and mechanical energies is pivotal to ferroelectrics to enable their applications in transducers, actuators and sensors. Ferroelectric polymers exhibit a giant electric-field-induced strain (>4.0%), markedly exceeding the actuation strain (≤1.7%) of piezoelectric ceramics and crystals. However, their normalized elastic energy densities remain orders of magnitude smaller than those of piezoelectric ceramics and crystals, severely limiting their practical applications in soft actuators. Here we report the use of electro-thermally induced ferroelectric phase transition in percolative ferroelectric polymer nanocomposites to achieve high strain performance in electric-field-driven actuation materials. We demonstrate a strain of over 8% and an output mechanical energy density of 11.3 J cm−3 at an electric field of 40 MV m−1 in the composite, outperforming the benchmark relaxor single-crystal ferroelectrics. This approach overcomes the trade-off between mechanical modulus and electro-strains in conventional piezoelectric polymer composites and opens up an avenue for high-performance ferroelectric actuators.
引用
收藏
页码:873 / 879
页数:6
相关论文
共 50 条
  • [31] Electro-thermal model of an optical transmitter
    Karray, M
    Desgreys, P
    Charlot, JJ
    2003 IEEE INTERNATIONAL CONFERENCE ON INDUSTRIAL TECHNOLOGY, VOLS 1 AND 2, PROCEEDINGS, 2003, : 751 - 753
  • [32] The Electro-Thermal Antimicrobial Carbon Surface
    Heo, Ki Joon
    Lee, Yeawan
    Kim, Sang Bok
    Kim, Yong-Jin
    Han, Bangwoo
    Kim, Hak-Joon
    IEEE TRANSACTIONS ON INDUSTRY APPLICATIONS, 2023, 59 (01) : 473 - 478
  • [33] Electro-thermal resistance of GaAs interconnects
    Wartenberg, SA
    Zhao, G
    Liu, QH
    JOURNAL OF ELECTRONIC MATERIALS, 2005, 34 (03) : 294 - 298
  • [34] Electro-thermal resistance of GaAs interconnects
    Scott A. Wartenberg
    Gang Zhao
    Qing H. Liu
    Journal of Electronic Materials, 2005, 34 : 294 - 298
  • [35] Electro-thermal Modeling of TCSAW Filter
    Akstaller, Wolfgang
    Kuypers, Jan
    Kokkonen, Kimmo
    Weigel, Robert
    Hagelauer, Amelie
    2018 IEEE INTERNATIONAL ULTRASONICS SYMPOSIUM (IUS), 2018,
  • [36] Compact electro-thermal models of interconnects
    Codecasa, Lorenzo
    MICROELECTRONICS JOURNAL, 2014, 45 (12) : 1777 - 1785
  • [37] Preliminary Characterization of An Electro-Thermal Converter
    Janicki, Marcin
    Jankowski, Mariusz
    Szenner, Michal
    2023 30TH INTERNATIONAL CONFERENCE ON MIXED DESIGN OF INTEGRATED CIRCUITS AND SYSTEM, MIXDES, 2023, : 160 - 163
  • [38] Analysis of the Fuses' Electro-Thermal Field
    Plesca, A.
    ELEKTRONIKA IR ELEKTROTECHNIKA, 2010, (08) : 85 - 88
  • [39] An electro-thermal paraffin bath.
    Steen, RH
    BRITISH MEDICAL JOURNAL, 1901, 1901 : 1733 - 1734
  • [40] IGBT Electro-thermal Simulation Under Dynamic Avalanche Condition Considering Distribution of Electro-thermal Stress on Chip
    Ma T.
    Luo Y.
    Jia Y.
    Li X.
    Shi Z.
    Zhongguo Dianji Gongcheng Xuebao/Proceedings of the Chinese Society of Electrical Engineering, 2021, 41 (20): : 7068 - 7078