In this paper, we present the results of experimental investigations of the diffusion layer formed at the film-substrate interface upon the electrodeposition of zinc films on a copper substrate. The investigations have shown that, in the transient layer, the deposited metal is diffused into the material of the substrate. The depth of the diffusion layer and, consequently, the concentrations of the incorporated zinc atoms depend strongly on the conditions of electrocrystallization, which vary from 1.5 μm when using direct current to 4 μm when using direct current in combination with laser-stimulated deposition (LSD). The X-ray diffraction investigations of the transient layer at the film-substrate interface have shown that, upon electrocrystallization using pulsed current in rigid regimes with the application of the LSD, a CuZn2 phase is formed in the diffusion layer. This indicates that the diffusion of zinc into copper occurs via two mechanisms, i.e., grainboundary and bulk. The obtained values of the coefficient of diffusion of zinc adatoms in polycrystalline copper are equal to 1.75 × 10−15 m2/s when using direct current and 1.74 × 10−13 m2/s when using LSD.