Higher regularity of the free boundary in the parabolic Signorini problem

被引:0
|
作者
Agnid Banerjee
Mariana Smit Vega Garcia
Andrew K. Zeller
机构
[1] University of California,Department of Mathematics
[2] University of Washington,Department of Mathematics
[3] Purdue University,Department of Mathematics
关键词
35R35;
D O I
暂无
中图分类号
学科分类号
摘要
We show that the quotient of two caloric functions which vanish on a portion of an Hk+α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H^{k+ \alpha }$$\end{document} regular slit is Hk+α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H^{k+ \alpha }$$\end{document} at the slit, for k≥2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k \ge 2$$\end{document}. In the case k=1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k=1$$\end{document}, we show that the quotient is in H1+α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H^{1+\alpha }$$\end{document} if the slit is assumed to be space-time C1,α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C^{1, \alpha }$$\end{document} regular. This can be thought of as a parabolic analogue of a recent important result in De Silva and Savin (Boundary Harnack estimates in slit domains and applications to thin free boundary problems, 2014), whose ideas inspired us. As an application, we show that the free boundary near a regular point of the parabolic thin obstacle problem studied in Danielli et al. (Optimal regularity and the free boundary in the parabolic Signorini problem. Mem. Am. Math. Soc., 2013) with zero obstacle is C∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C^{\infty }$$\end{document} regular in space and time.
引用
收藏
相关论文
共 50 条