Pointwise regularity of the free boundary for the parabolic obstacle problem

被引:0
|
作者
Erik Lindgren
Régis Monneau
机构
[1] Royal Institute of Technology,Department of Mathematics
[2] Université Paris-Est,undefined
[3] CERMICS,undefined
[4] Ecole des Ponts ParisTech,undefined
关键词
35R35;
D O I
暂无
中图分类号
学科分类号
摘要
We study the parabolic obstacle problem Δu-ut=fχ{u>0},u≥0,f∈Lpwithf(0)=1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} \Delta u-u_t=f\chi _{\{u>0\}}, \quad u\ge 0,\quad f\in L^p \quad \text{ with }\quad f(0)=1 \end{aligned}$$\end{document}and obtain two monotonicity formulae, one that applies for general free boundary points and one for singular free boundary points. These are used to prove a second order Taylor expansion at singular points (under a pointwise Dini condition), with an estimate of the error (under a pointwise double Dini condition). Moreover, under the assumption that f\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f$$\end{document} is Dini continuous, we prove that the set of regular points is locally a (parabolic) C1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C^1$$\end{document}-surface and that the set of singular points is locally contained in a union of (parabolic) C1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C^1$$\end{document} manifolds.
引用
收藏
页码:299 / 347
页数:48
相关论文
共 50 条