Delaunay Triangulation of Manifolds

被引:0
|
作者
Jean-Daniel Boissonnat
Ramsay Dyer
Arijit Ghosh
机构
[1] INRIA,ACM Unit
[2] DataShape,undefined
[3] Indian Statistical Institute,undefined
关键词
Delaunay complex; Triangulation; Manifold; Protection; Perturbation; Primary 57R05; Secondary 52B70; 54B15;
D O I
暂无
中图分类号
学科分类号
摘要
We present an algorithm for producing Delaunay triangulations of manifolds. The algorithm can accommodate abstract manifolds that are not presented as submanifolds of Euclidean space. Given a set of sample points and an atlas on a compact manifold, a manifold Delaunay complex is produced for a perturbed point set provided the transition functions are bi-Lipschitz with a constant close to 1, and the original sample points meet a local density requirement; no smoothness assumptions are required. If the transition functions are smooth, the output is a triangulation of the manifold. The output complex is naturally endowed with a piecewise-flat metric which, when the original manifold is Riemannian, is a close approximation of the original Riemannian metric. In this case the output complex is also a Delaunay triangulation of its vertices with respect to this piecewise-flat metric.
引用
收藏
页码:399 / 431
页数:32
相关论文
共 50 条
  • [21] Curved Optimal Delaunay Triangulation
    Feng, Leman
    Alliez, Pierre
    Buse, Laurent
    Delingette, Herve
    Desbrun, Mathieu
    ACM TRANSACTIONS ON GRAPHICS, 2018, 37 (04):
  • [22] Complex conforming Delaunay triangulation
    Meng XianHai
    Li JiGang
    Yang Qin
    Cai Qiang
    Chen QiMing
    SCIENCE CHINA-INFORMATION SCIENCES, 2010, 53 (06) : 1130 - 1140
  • [23] OPTIMALITY OF THE DELAUNAY TRIANGULATION IN RD
    RAJAN, VT
    DISCRETE & COMPUTATIONAL GEOMETRY, 1994, 12 (02) : 189 - 202
  • [24] Complex conforming Delaunay triangulation
    XianHai Meng
    JiGang Li
    Qin Yang
    Qiang Cai
    QiMing Chen
    Science China Information Sciences, 2010, 53 : 1130 - 1140
  • [25] Transactions and Privatization in Delaunay Triangulation
    Scott, Michael L.
    Spear, Michael F.
    Dalessandro, Luke
    Marathe, Virendra J.
    PODC'07: PROCEEDINGS OF THE 26TH ANNUAL ACM SYMPOSIUM ON PRINCIPLES OF DISTRIBUTED COMPUTING, 2007, : 336 - 337
  • [26] A weak characterisation of the Delaunay triangulation
    de Silva, Vin
    GEOMETRIAE DEDICATA, 2008, 135 (01) : 39 - 64
  • [27] Delaunay triangulation and Riemannian metric
    Borouchaki, H
    George, PL
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1996, 323 (11): : 1195 - 1200
  • [28] Structural tolerance and Delaunay triangulation
    Abellanas, M
    Hurtado, F
    Ramos, PA
    INFORMATION PROCESSING LETTERS, 1999, 71 (5-6) : 221 - 227
  • [29] On Delaunay triangulation automata with memory
    Adamatzky, A. (andrew.adamatzky@uwe.ac.uk), 1600, Elsevier B.V., Netherlands (04):
  • [30] COMPUTING CONSTRAINED TRIANGULATION AND DELAUNAY TRIANGULATION - A NEW ALGORITHM
    ZHOU, JM
    SHAO, KR
    ZHOU, KD
    ZHAN, QH
    IEEE TRANSACTIONS ON MAGNETICS, 1990, 26 (02) : 694 - 697