Painlevé Analysis and Singular Manifold Method for a (2 + 1) Dimensional Non-Linear Schrödinger Equation

被引:0
|
作者
P G Estévez
G A Hernaez
机构
[1] Universidad de Salamanca,Area de Física Teorica, Facultad de Física
关键词
D O I
暂无
中图分类号
学科分类号
摘要
The real version of a (2 + 1) dimensional integrable generalization of the nonlinear Schrödinger equation is studied from the point of view of Painlevé analysis. In this way we find the Lax pair, Darboux transformations and Hirota’s functions as well as solitonic and dromionic solutions from an iterative procedure.
引用
收藏
页码:106 / 111
页数:5
相关论文
共 50 条
  • [1] Painleve analysis and singular manifold method for a (2+1) dimensional non-linear Schrodinger equation
    Estévez, PG
    Hernáez, GA
    JOURNAL OF NONLINEAR MATHEMATICAL PHYSICS, 2001, 8 (Suppl 1) : 106 - 111
  • [2] Optical solitons to the (1+2)-dimensional Chiral non-linear Schrödinger equation
    Muslum Ozisik
    Mustafa Bayram
    Aydin Secer
    Melih Cinar
    Abdullahi Yusuf
    Tukur Abdulkadir Sulaiman
    Optical and Quantum Electronics, 2022, 54
  • [3] Haar wavelet collocation method for linear and non-linear Schrödinger equation
    Khan, Muhammad Ubaid
    Shah, Syed Azhar Ali
    Ahsan, Muhammad
    Alwuthaynani, Maher
    PHYSICA SCRIPTA, 2025, 100 (01)
  • [4] Instability for the Semiclassical Non-linear Schrödinger Equation
    Nicolas Burq
    Maciej Zworski
    Communications in Mathematical Physics, 2005, 260 : 45 - 58
  • [5] The non-linear Schrödinger equation with a periodic δ-interaction
    Jaime Angulo Pava
    Gustavo Ponce
    Bulletin of the Brazilian Mathematical Society, New Series, 2013, 44 : 497 - 551
  • [6] On the variational principle for the non-linear Schrödinger equation
    Zsuzsanna É. Mihálka
    Ádám Margócsy
    Ágnes Szabados
    Péter R. Surján
    Journal of Mathematical Chemistry, 2020, 58 : 340 - 351
  • [7] A meshfree approach for analysis and computational modeling of non-linear Schrödinger equation
    Ram Jiwari
    Sanjay Kumar
    R. C. Mittal
    Jan Awrejcewicz
    Computational and Applied Mathematics, 2020, 39
  • [8] Destruction of the Beating Effect¶for a Non-Linear Schrödinger Equation
    Vincenzo Grecchi
    André Martinez
    Andrea Sacchetti
    Communications in Mathematical Physics, 2002, 227 : 191 - 209
  • [9] Numerical Simulation of a Non-linear Singular Perturbed Schrödinger Equation Using Finite Element Approximation
    Manoj Kumar
    Akanksha Srivastava
    Garima Mishra
    National Academy Science Letters, 2013, 36 : 239 - 252
  • [10] Derivative non-linear Schrodinger equation: Singular manifold method and Lie symmetries
    Albares, P.
    Estevez, P. G.
    Lejarreta, J. D.
    APPLIED MATHEMATICS AND COMPUTATION, 2021, 400