We show that the crystallographic braid group Bn/[Pn,Pn]\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$B_n/[P_n,P_n]$$\end{document} embeds naturally in the group of unrestricted virtual braids UVBn\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$UVB_n$$\end{document}, we give new proofs of known results about the torsion elements of Bn/[Pn,Pn]\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$B_n/[P_n,P_n]$$\end{document}, and we characterise the torsion elements of UVBn\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$UVB_n$$\end{document}.
机构:
Bauman Moscow State Tech Univ, Dept Fundamental Sci, Moscow, RussiaBauman Moscow State Tech Univ, Dept Fundamental Sci, Moscow, Russia
Kim, S.
Manturov, V. O.
论文数: 0引用数: 0
h-index: 0
机构:
Chelyabinsk State Univ, Moscow, Russia
Bauman Moscow State Tech Univ, Moscow, RussiaBauman Moscow State Tech Univ, Dept Fundamental Sci, Moscow, Russia