A priori and a posteriori estimates of the stabilized finite element methods for the incompressible flow with slip boundary conditions arising in arteriosclerosis

被引:0
|
作者
Jian Li
Haibiao Zheng
Qingsong Zou
机构
[1] Shaanxi University of Science and Technology,Department of Mathematics, School of Arts and Sciences
[2] East China Normal University,School of Mathematical Sciences, Shanghai Key Laboratory of Pure Mathematics and Mathematical Practice
[3] Sun Yat-sen University,School of Data and Computational Science and Guangdong Province Key Laboratory of Computational Science
来源
Advances in Difference Equations | / 2019卷
关键词
Stokes equations; Slip boundary condition; Variational inequality; Finite element methods; A priori error estimates; A posteriori error estimates; Numerical experiments; 35L70; 65N30; 76D06;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we develop the lower order stabilized finite element methods for the incompressible flow with the slip boundary conditions of friction type whose weak solution satisfies a variational inequality. The H1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$H^{1}$\end{document}-norm for the velocity and the L2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$L^{2}$\end{document}-norm for the pressure decrease with optimal convergence order. The reliable and efficient a posteriori error estimates are also derived. Finally, numerical experiments are presented to validate the theoretical results.
引用
收藏
相关论文
共 50 条