Let G be a finite group and P a Sylow 2-subgroup of G. We obtain both asymptotic and explicit bounds for the number of odd-degree irreducible complex representations of G in terms of the size of the abelianization of P. To do so, we, on one hand, make use of the recent proof of the McKay conjecture for the prime 2 by Malle and Späth, and, on the other hand, prove lower bounds for the class number of the semidirect product of an odd-order group acting on an abelian 2-group.
机构:
Univ Witwatersrand, Sch Math, Private Bag 3, ZA-2050 Johannesburg, South AfricaUniv Witwatersrand, Sch Math, Private Bag 3, ZA-2050 Johannesburg, South Africa
机构:
Osaka Univ, Grad Sch Engn, Suita, Osaka 5650871, JapanOsaka Univ, Grad Sch Engn, Suita, Osaka 5650871, Japan
Kodera, Kenta
Cheng, Chen-Mou
论文数: 0引用数: 0
h-index: 0
机构:
Kanazawa Univ, Grad Sch Nat Sci & Technol, Kanazawa, Ishikawa 9201192, JapanOsaka Univ, Grad Sch Engn, Suita, Osaka 5650871, Japan
Cheng, Chen-Mou
Miyaji, Atsuko
论文数: 0引用数: 0
h-index: 0
机构:
Osaka Univ, Grad Sch Engn, Suita, Osaka 5650871, Japan
Japan Adv Inst Sci & Technol, Nomi 9231292, JapanOsaka Univ, Grad Sch Engn, Suita, Osaka 5650871, Japan