Characterization of the Fermat curve as the most symmetric nonsingular algebraic plane curve

被引:0
|
作者
Fernanda Pambianco
机构
[1] Perugia University,Department of Mathematics and Informatics
来源
Mathematische Zeitschrift | 2014年 / 277卷
关键词
Plane algebraic curves; Field of characteristic zero; Automorphism groups; Fermat curve; 14H45; 14N15;
D O I
暂无
中图分类号
学科分类号
摘要
A projective nonsingular plane algebraic curve of degree d≥4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d\ge 4$$\end{document} is called maximally symmetric if it attains the maximum order of the automorphism groups for complex nonsingular plane algebraic curves of degree d\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d$$\end{document}. For d≤7\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d\le 7$$\end{document}, all such curves are known. Up to projectivities, they are the Fermat curve for d=5,7\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d=5,7$$\end{document}; see Kaneta et al. (RIMS Kokyuroku 1109:182–191, 1999) and Kaneta et al. (Geom. Dedic. 85:317–334, 2001), the Klein quartic for d=4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d=4$$\end{document}, see Hartshorne (Algebraic Geometry. Springer, New York, 1977), and the Wiman sextic for d=6\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d=6$$\end{document}; see Doi et al. (Osaka J. Math. 37:667–687, 2000). In this paper we work on projective plane curves defined over an algebraically closed field of characteristic zero, and we extend this result to every d≥8\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d\ge 8$$\end{document} showing that the Fermat curve is the unique maximally symmetric nonsingular curve of degree d\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d$$\end{document} with d≥8\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d\ge 8$$\end{document}, up to projectivity. For d=11,13,17,19\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d=11,13,17,19$$\end{document}, this characterization of the Fermat curve has already been obtained; see Kaneta et al. (Geom. Dedic. 85:317–334, 2001).
引用
收藏
页码:975 / 993
页数:18
相关论文
共 50 条