A new streamline diffusion finite element method for the generalized Oseen problem

被引:0
|
作者
Chao Xu
Dongyang Shi
Xin Liao
机构
[1] Luoyang Institute of Science and Technology,Faculty of Mathematics and Physics Education
[2] Zhengzhou University,School of Mathematics and Statistics
来源
关键词
streamline diffusion method; Bernardi-Raugel element; Oseen problem; superconvergent error estimate; O242.21; 65N30; 65N15;
D O I
暂无
中图分类号
学科分类号
摘要
This paper aims to present a new streamline diffusion method with low order rectangular Bernardi-Raugel elements to solve the generalized Oseen equations. With the help of the Bramble-Hilbert lemma, the optimal errors of the velocity and pressure are estimated, which are independent of the considered parameter ε. With an interpolation postprocessing approach, the superconvergent error of the pressure is obtained. Finally, a numerical experiment is carried out to confirm the theoretical results.
引用
收藏
页码:291 / 304
页数:13
相关论文
共 50 条
  • [41] A streamline-diffusion method for nonconforming finite element approximations applied to convection-diffusion problems
    John, V
    Matthies, G
    Schieweck, F
    Tobiska, L
    [J]. COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 1998, 166 (1-2) : 85 - 97
  • [42] Finite element method for a generalized constant delay diffusion equation
    Bu, Weiping
    Guan, Sizhu
    Xu, Xiaohong
    Tang, Yifa
    [J]. COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2024, 134
  • [43] Finite Element Method to a Generalized Thermoelastic Coupled Problem for a Strip
    He, Tianhu
    Guan, Mingzhi
    [J]. PROCEEDINGS OF THE SECOND INTERNATIONAL CONFERENCE ON MODELLING AND SIMULATION (ICMS2009), VOL 2, 2009, : 229 - 234
  • [44] An unusual stabilized finite element method for a generalized Stokes problem
    Barrenechea, GR
    Valentin, F
    [J]. NUMERISCHE MATHEMATIK, 2002, 92 (04) : 653 - 677
  • [45] An adaptive stabilized finite element method for the generalized Stokes problem
    Araya, Rodolfo
    Barrenechea, Gabriel R.
    Poza, Abner
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2008, 214 (02) : 457 - 479
  • [46] An unusual stabilized finite element method for a generalized stokes problem
    Barrenechea G.R.
    Valentin F.
    [J]. Numerische Mathematik, 2002, 92 (4) : 653 - 673
  • [47] Coupling boundary integral and finite element methods for the Oseen coupled problem
    He, YN
    [J]. COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2002, 44 (10-11) : 1413 - 1429
  • [48] Asymptotic streamline diffusion finite element method for singularly perturbed convection-diffusion differential difference equations
    Senthilkumar, L. S.
    Veerasamy, Subburayan
    Agarwal, Ravi P.
    [J]. MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2023, 46 (10) : 11509 - 11522
  • [49] STABILISED FINITE ELEMENT METHODS FOR THE OSEEN PROBLEM ON ANISOTROPIC QUADRILATERAL MESHES
    Barrenechea, Gabriel R.
    Wachtel, Andreas
    [J]. ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS, 2018, 52 (01) : 99 - 122
  • [50] A new local projection stabilization virtual element method for the Oseen problem on polygonal meshes
    Yang Li
    Minfu Feng
    Yan Luo
    [J]. Advances in Computational Mathematics, 2022, 48