Global Stability of Minkowski Space for the Einstein–Vlasov System in the Harmonic Gauge

被引:0
|
作者
Hans Lindblad
Martin Taylor
机构
[1] Johns Hopkins University,Department of Mathematics
[2] Imperial College London,Department of Mathematics
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Minkowski space is shown to be globally stable as a solution to the massive Einstein–Vlasov system. The proof is based on a harmonic gauge in which the equations reduce to a system of quasilinear wave equations for the metric, satisfying the weak null condition, coupled to a transport equation for the Vlasov particle distribution function. Central to the proof is a collection of vector fields used to control the particle distribution function, a function of both spacetime and momentum variables. The vector fields are derived using a general procedure, are adapted to the geometry of the solution and reduce to the generators of the symmetries of Minkowski space when restricted to acting on spacetime functions. Moreover, when specialising to the case of vacuum, the proof provides a simplification of previous stability works.
引用
收藏
页码:517 / 633
页数:116
相关论文
共 50 条
  • [41] Quantum instability of gauge theories on ?-Minkowski space
    Hersent, Kilian
    Mathieu, Philippe
    Wallet, Jean-Christophe
    [J]. PHYSICAL REVIEW D, 2022, 105 (10)
  • [42] Gauge drivers for the generalized harmonic Einstein equations
    Lindblom, Lee
    Matthews, Keith D.
    Rinne, Oliver
    Scheel, Mark A.
    [J]. PHYSICAL REVIEW D, 2008, 77 (08):
  • [43] GLOBAL EXISTENCE OF HARMONIC MAPS ON MINKOWSKI SPACE-TIME M3
    CHOQUETBRUHAT, Y
    GU, CH
    [J]. COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1989, 308 (06): : 167 - 170
  • [44] The Global Nonlinear Stability of Minkowski Space for Self-gravitating Massive Fields
    LeFloch, Philippe G.
    Ma, Yue
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2016, 346 (02) : 603 - 665
  • [45] Static Solutions of the Vlasov-Einstein System
    G. Wolansky
    [J]. Archive for Rational Mechanics and Analysis, 2001, 156 : 205 - 230
  • [46] The Einstein-Vlasov System/Kinetic Theory
    Andreasson, Hakan
    [J]. LIVING REVIEWS IN RELATIVITY, 2005, 8 (1)
  • [47] On the Einstein-Vlasov system with hyperbolic symmetry
    Andréasson, H
    Rein, G
    Rendall, AD
    [J]. MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 2003, 134 : 529 - 549
  • [48] Static solutions of the Vlasov-Einstein system
    Wolansky, G
    [J]. ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2001, 156 (03) : 205 - 230
  • [49] The Einstein-Vlasov System/Kinetic Theory
    Andreasson, Hakan
    [J]. LIVING REVIEWS IN RELATIVITY, 2011, 14
  • [50] The Einstein-Vlasov System/Kinetic Theory
    Håkan Andréasson
    [J]. Living Reviews in Relativity, 2011, 14