Evaluation of certain convolution sums involving the sum of the divisors function

被引:0
|
作者
Bülent Köklüce
机构
[1] Brown University,The Institute for Computational and Experimental Research in Mathematics
来源
The Ramanujan Journal | 2023年 / 60卷
关键词
Sum of divisor function; Convolution sum; Eta quotients; Modular forms; Quadratic forms; Representation number; 11A25; 11E20; 11E25; 11F20; 11F27;
D O I
暂无
中图分类号
学科分类号
摘要
We evaluate the convolution sums ∑rl+sm=nσ(l)σ(m)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sum _{rl+sm=n}\sigma (l)\sigma (m)$$\end{document}, for (r,s)=(1,17),(1,34),(2,17),\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ (r,s)=(1,17),(1,34),(2,17),$$\end{document} (1, 68) and (4, 17), for all positive integers n.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n\mathbf {.}$$\end{document} We then use these evaluations to determine formula for the number of representation of a positive integer n by the octonary quadratic form x12+x22+x32+x42+17(x52+x62+x72+x82).\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ x_{1}^{2}+x_{2}^{2}+x_{3}^{2}+x_{4}^{2}+17\big (x_{5}^{2}+x_{6}^{2}+x_{7}^{2}+x_{8}^{2}\big ).$$\end{document}
引用
收藏
页码:533 / 549
页数:16
相关论文
共 50 条
  • [1] Evaluation of certain convolution sums involving the sum of the divisors function
    Kokluce, Bulent
    RAMANUJAN JOURNAL, 2023, 60 (02): : 533 - 549
  • [2] Evaluation of two convolution sums involving the sum of divisors function
    Lemire, M
    Williams, KS
    BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2006, 73 (01) : 107 - 115
  • [3] Evaluation of the convolution sum involving the sum of divisors function for 22, 44 and 52
    Ntienjem, Ebenezer
    OPEN MATHEMATICS, 2017, 15 : 446 - 458
  • [4] Elementary evaluation of certain convolution sums involving divisor functions
    Huard, JG
    Ou, ZMM
    Spearman, BK
    Williams, KS
    NUMBER THEORY FOR THE MILLENNIUM II, 2002, : 229 - 274
  • [5] On a Sum Involving the Sum-of-Divisors Function
    Zhao, Feng
    Wu, Jie
    JOURNAL OF MATHEMATICS, 2021, 2021
  • [6] Convolution sums involving the divisor function
    Cheng, N
    Williams, KS
    PROCEEDINGS OF THE EDINBURGH MATHEMATICAL SOCIETY, 2004, 47 : 561 - 572
  • [7] CONGRUENCES AND EXPONENTIAL SUMS WITH THE SUM OF ALIQUOT DIVISORS FUNCTION
    Balasuriya, Sanka
    Banks, William D.
    Shparlinski, Igor E.
    INTERNATIONAL JOURNAL OF NUMBER THEORY, 2008, 4 (06) : 903 - 909
  • [8] CONGRUENCE IDENTITIES INVOLVING SUMS OF ODD DIVISORS FUNCTION
    Merca, Mircea
    PROCEEDINGS OF THE ROMANIAN ACADEMY SERIES A-MATHEMATICS PHYSICS TECHNICAL SCIENCES INFORMATION SCIENCE, 2021, 22 (02): : 119 - 125
  • [9] SUMS INVOLVING COMMON DIVISORS
    DYER, T
    HARMAN, G
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 1986, 34 : 1 - 11
  • [10] ESTIMATES FOR CERTAIN SHIFTED CONVOLUTION SUMS INVOLVING HECKE EIGENVALUES
    Hua, Guodong
    COMMUNICATIONS OF THE KOREAN MATHEMATICAL SOCIETY, 2023, 38 (02): : 319 - 330