Evaluation of certain convolution sums involving the sum of the divisors function

被引:0
|
作者
Kokluce, Bulent [1 ]
机构
[1] Brown Univ, Inst Computat & Expt Res Math, 121 S Main St, Providence, RI 02903 USA
来源
RAMANUJAN JOURNAL | 2023年 / 60卷 / 02期
关键词
Sum of divisor function; Convolution sum; Eta quotients; Modular forms; Quadratic forms; Representation number; SIGMA(L)SIGMA(M);
D O I
10.1007/s11139-022-00632-x
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We evaluate the convolution sums Sigma(rl+sm=n) sigma(l)sigma(m), for (r, s) = (1, 17), (1, 34), (2, 17), (1, 68) and (4, 17), for all positive integers n. We then use these evaluations to determine formula for the number of representation of a positive integer n by the octonary quadratic form x(1)(2)+x(2)(2)+x(3)(2)+x(4)(2)+17(x(5)(2)+x(6)(2)+x(7)(2)+x(8)(2)).
引用
收藏
页码:533 / 549
页数:17
相关论文
共 50 条
  • [1] Evaluation of certain convolution sums involving the sum of the divisors function
    Bülent Köklüce
    The Ramanujan Journal, 2023, 60 : 533 - 549
  • [2] Evaluation of two convolution sums involving the sum of divisors function
    Lemire, M
    Williams, KS
    BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2006, 73 (01) : 107 - 115
  • [3] Evaluation of the convolution sum involving the sum of divisors function for 22, 44 and 52
    Ntienjem, Ebenezer
    OPEN MATHEMATICS, 2017, 15 : 446 - 458
  • [4] Elementary evaluation of certain convolution sums involving divisor functions
    Huard, JG
    Ou, ZMM
    Spearman, BK
    Williams, KS
    NUMBER THEORY FOR THE MILLENNIUM II, 2002, : 229 - 274
  • [5] On a Sum Involving the Sum-of-Divisors Function
    Zhao, Feng
    Wu, Jie
    JOURNAL OF MATHEMATICS, 2021, 2021
  • [6] Convolution sums involving the divisor function
    Cheng, N
    Williams, KS
    PROCEEDINGS OF THE EDINBURGH MATHEMATICAL SOCIETY, 2004, 47 : 561 - 572
  • [7] CONGRUENCES AND EXPONENTIAL SUMS WITH THE SUM OF ALIQUOT DIVISORS FUNCTION
    Balasuriya, Sanka
    Banks, William D.
    Shparlinski, Igor E.
    INTERNATIONAL JOURNAL OF NUMBER THEORY, 2008, 4 (06) : 903 - 909
  • [8] CONGRUENCE IDENTITIES INVOLVING SUMS OF ODD DIVISORS FUNCTION
    Merca, Mircea
    PROCEEDINGS OF THE ROMANIAN ACADEMY SERIES A-MATHEMATICS PHYSICS TECHNICAL SCIENCES INFORMATION SCIENCE, 2021, 22 (02): : 119 - 125
  • [9] SUMS INVOLVING COMMON DIVISORS
    DYER, T
    HARMAN, G
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 1986, 34 : 1 - 11
  • [10] ESTIMATES FOR CERTAIN SHIFTED CONVOLUTION SUMS INVOLVING HECKE EIGENVALUES
    Hua, Guodong
    COMMUNICATIONS OF THE KOREAN MATHEMATICAL SOCIETY, 2023, 38 (02): : 319 - 330