Secondary bifurcations in semilinear ordinary differential equations

被引:0
|
作者
Kan, Toru [1 ]
机构
[1] Osaka Metropolitan Univ, Dept Math, 1-1 Gakuen Cho,Naka Ku, Sakai 5998531, Japan
来源
基金
日本学术振兴会;
关键词
Secondary bifurcation; Semilinear elliptic equation; Boundary value problem; Chafee-Infante problem; Matching condition; PARABOLIC EQUATION; PERIOD; DOMAIN;
D O I
10.1007/s42985-022-00180-5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the Neumann problem for the equation u(xx)+lambda f(u)=0 in the punctured interval(-1,1)\{0}, where lambda>0 is a bifurcation parameter and f(u)=u-u(3).Atx=0,we impose the conditions u(-0)+au(x)(-0)=u(+0)-au(x)(+0 )and u(x)(-0)=u(x)(+0) for a constant a>0 (the symbols+0and-0 stand for one-sided limits). The problem appearsas a limiting equation for a semilinear elliptic equation in a higher dimensional domainshrinking to the interval(-1,1). First we prove that odd solutions and even solutions formfamilies of branches {C-k(0)}(k is an element of N )and {C-k(e)} k is an element of N, respectively. Both C(k)(o )and C(k)(e )bifurcate from the trivial solution u=0. We then show that C-k(e) contains no other bifurcation point, while C-k(o) contains two points where secondary bifurcations occur. Finally we determine the Morse index of solutions on the branches. General conditions on f(u) for the same assertions to hold are also given.
引用
收藏
页数:39
相关论文
共 50 条
  • [41] DEGENERATED ORDINARY DIFFERENTIAL EQUATIONS
    ELSCHNER, J
    MATHEMATISCHE NACHRICHTEN, 1975, 68 : 183 - 199
  • [42] Modelling with ordinary differential equations
    Applied Mechanics Reviews, 1995, 48 (06):
  • [43] ELEMENTS OF ORDINARY DIFFERENTIAL EQUATIONS
    AGNEW, J
    SCIENCE, 1965, 147 (3656) : 390 - &
  • [44] Ordinary differential equations: an introduction
    Stander, D.
    MATHEMATICAL GAZETTE, 2005, 89 (515): : 334 - 336
  • [45] UNIQUENESS FOR ORDINARY DIFFERENTIAL EQUATIONS
    BERNFELD, SR
    DRIVER, RD
    LAKSHMIKANTHAM, V
    MATHEMATICAL SYSTEMS THEORY, 1976, 9 (04): : 359 - 367
  • [46] Ordinary Differential Equations & Computability
    Bournez, Olivier
    2018 20TH INTERNATIONAL SYMPOSIUM ON SYMBOLIC AND NUMERIC ALGORITHMS FOR SCIENTIFIC COMPUTING (SYNASC 2018), 2019, : 3 - 5
  • [47] Decomposition of ordinary differential equations
    Schwarz, Fritz
    BULLETIN OF MATHEMATICAL SCIENCES, 2017, 7 (03) : 575 - 613
  • [48] Neural Ordinary Differential Equations
    Chen, Ricky T. Q.
    Rubanova, Yulia
    Bettencourt, Jesse
    Duvenaud, David
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 31 (NIPS 2018), 2018, 31
  • [49] Reducible ordinary differential equations
    Hadeler, K. P.
    Walcher, S.
    JOURNAL OF NONLINEAR SCIENCE, 2006, 16 (06) : 583 - 613
  • [50] SUBFUNCTIONS FOR ORDINARY DIFFERENTIAL EQUATIONS
    AKO, K
    JOURNAL OF THE FACULTY OF SCIENCE UNIVERSITY OF TOKYO SECTION 1-MATHEMATICS ASTRONOMY PHYSICS CHEMISTRY, 1965, 12 : 17 - &