Tighter Monogamy and Polygamy Relations of Quantum Entanglement in Multi-qubit Systems

被引:0
|
作者
Wen-Wen Liu
Zi-Feng Yang
Shao-Ming Fei
机构
[1] Capital Normal University,School of Mathematical Sciences
[2] Max-Planck-Institute for Mathematics in the Sciences,undefined
来源
International Journal of Theoretical Physics | 2021年 / 60卷
关键词
Monogamy relations; Polygamy relations; Concurrence; Entanglement of formation; Negativity; Tsallis-q entanglement; Rényi-; entanglement;
D O I
暂无
中图分类号
学科分类号
摘要
We investigate the monogamy relations related to the concurrence, the entanglement of formation, convex-roof extended negativity, Tsallis-q entanglement and Rényi-α entanglement, the polygamy relations related to the entanglement of formation, Tsallis-q entanglement and Rényi-α entanglement. Monogamy and polygamy inequalities are obtained for arbitrary multipartite qubit systems, which are proved to be tighter than the existing ones. Detailed examples are presented.
引用
收藏
页码:4177 / 4195
页数:18
相关论文
共 50 条
  • [41] Parameterized monogamy and polygamy relations of multipartite entanglement
    沈中喜
    王珂珂
    费少明
    Chinese Physics B, 2023, 32 (12) : 267 - 276
  • [42] Parameterized monogamy and polygamy relations of multipartite entanglement
    Shen, Zhong-Xi
    Wang, Ke-Ke
    Fei, Shao-Ming
    CHINESE PHYSICS B, 2023, 32 (12)
  • [43] Pairwise entanglement in symmetric multi-qubit systems
    Wang, X
    Molmer, K
    EUROPEAN PHYSICAL JOURNAL D, 2002, 18 (03): : 385 - 391
  • [44] Pairwise entanglement in symmetric multi-qubit systems
    X. Wang
    K. Mølmer
    The European Physical Journal D - Atomic, Molecular, Optical and Plasma Physics, 2002, 18 : 385 - 391
  • [45] Complementarity relations for multi-qubit systems
    Tessier, TE
    FOUNDATIONS OF PHYSICS LETTERS, 2005, 18 (02) : 107 - 121
  • [46] Tighter monogamy and polygamy relations using Renyi- entropy
    Liang, Yanying
    Zheng, Zhu-Jun
    Zhu, Chuan-jie
    QUANTUM INFORMATION PROCESSING, 2019, 18 (06)
  • [47] Generalized monogamy linear entropy relations for multi-qubit pure states
    Zha, Xinwei
    Ahmed, Irfan
    Zhang, Da
    Zhang, Yanpeng
    LASER PHYSICS, 2020, 30 (03)
  • [48] A simple quantum voting scheme with multi-qubit entanglement
    Xue, Peng
    Zhang, Xin
    SCIENTIFIC REPORTS, 2017, 7
  • [49] A simple quantum voting scheme with multi-qubit entanglement
    Peng Xue
    Xin Zhang
    Scientific Reports, 7
  • [50] The geometry of multi-qubit entanglement
    Iwai, Toshihiro
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2007, 40 (40) : 12161 - 12184