Exponentially Dichotomous Operators and Exponential Dichotomy of Evolution Equations on the Half-Line

被引:0
|
作者
Nguyen Thieu Huy
机构
[1] Universität Tübingen,AGFA Mathematisches Institut
来源
关键词
Primary: 34G10; Secondary: 47H20; Evolution family; integral equation; exponential dichotomy; exponentially dichotomous operators; quasi-exponential dichotomous operators;
D O I
暂无
中图分类号
学科分类号
摘要
To an evolution family on the half-line \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$ \mathcal{U} = (U(t, s))_{t\geq s\geq 0} $$ \end{document} of bounded operators on a Banach space X we associate operators IX and IZ related to the integral equation \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$ u(t) = U(t, s)u(s) + \int^{t}_{s} U(t, \xi) f (\xi)d\xi $$ \end{document} and a closed subspace Z of X. We characterize the exponential dichotomy of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$ \mathcal{U} $$ \end{document} by the exponential dichotomy and the quasi-exponential dichotomy of the operators X we associate operators IX and IZ, respectively.
引用
收藏
页码:497 / 510
页数:13
相关论文
共 50 条
  • [31] Homogeneous Schrodinger Operators on Half-Line
    Bruneau, Laurent
    Derezinski, Jan
    Georgescu, Vladimir
    [J]. ANNALES HENRI POINCARE, 2011, 12 (03): : 547 - 590
  • [32] Resonances for Dirac operators on the half-line
    Iantchenko, Alexei
    Korotyaev, Evgeny
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2014, 420 (01) : 279 - 313
  • [33] SINGULAR INTEGRAL OPERATORS ON A HALF-LINE
    CORDES, HO
    HERMAN, EA
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1966, 56 (06) : 1668 - &
  • [34] POINTWISE EXPONENTIALLY WEIGHTED ESTIMATES FOR APPROXIMATION ON THE HALF-LINE
    BALAZS, K
    KILGORE, T
    [J]. NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 1992, 13 (3-4) : 223 - 232
  • [35] Second-order differential equations on half-line associated with monotone operators
    Apreutesei, NC
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1998, 223 (02) : 472 - 493
  • [36] ON NONLOCAL COSMOLOGICAL EQUATIONS ON HALF-LINE
    Aref'eva, I. Ya.
    Volovich, I. V.
    [J]. VESTNIK SAMARSKOGO GOSUDARSTVENNOGO TEKHNICHESKOGO UNIVERSITETA-SERIYA-FIZIKO-MATEMATICHESKIYE NAUKI, 2011, (01): : 16 - 27
  • [37] A characterization of singular Schrodinger operators on the half-line
    Scandone, Raffaele
    Luperi Baglini, Lorenzo
    Simonov, Kyrylo
    [J]. CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 2021, 64 (04): : 923 - 941
  • [38] Reconstruction of pencils of differential operators on the half-line
    V. A. Yurko
    [J]. Mathematical Notes, 2000, 67 : 261 - 265
  • [39] Homogeneous Schrödinger Operators on Half-Line
    Laurent Bruneau
    Jan Dereziński
    Vladimir Georgescu
    [J]. Annales Henri Poincaré, 2011, 12 : 547 - 590
  • [40] Half-line Schrodinger operators with no bound states
    Damanik, D
    Killip, R
    [J]. ACTA MATHEMATICA, 2004, 193 (01) : 31 - 72