Homoclinic groups, IE groups, and expansive algebraic actions

被引:0
|
作者
Nhan-Phu Chung
Hanfeng Li
机构
[1] SUNY at Buffalo,Department of Mathematics
[2] Max Planck Institute for Mathematics in the Sciences,Center of Mathematics, Chongqing Institute of Mathematics
[3] Chongqing University,undefined
来源
Inventiones mathematicae | 2015年 / 199卷
关键词
Primary 22D40; 37A15; 37B40; 20C07; 43A20; Secondary 22D15;
D O I
暂无
中图分类号
学科分类号
摘要
We give algebraic characterizations for expansiveness of algebraic actions of countable groups. The notion of p\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p$$\end{document}-expansiveness is introduced for algebraic actions, and we show that for countable amenable groups, a finitely presented algebraic action is 1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1$$\end{document}-expansive exactly when it has finite entropy. We also study the local entropy theory for actions of countable amenable groups on compact groups by automorphisms, and show that the IE group determines the Pinsker factor for such actions. For an expansive algebraic action of a polycyclic-by-finite group on X\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$X$$\end{document}, it is shown that the entropy of the action is equal to the entropy of the induced action on the Pontryagin dual of the homoclinic group, the homoclinic group is a dense subgroup of the IE group, the homoclinic group is nontrivial exactly when the action has positive entropy, and the homoclinic group is dense in X\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$X$$\end{document} exactly when the action has completely positive entropy.
引用
收藏
页码:805 / 858
页数:53
相关论文
共 50 条
  • [21] Algebraic realization of actions of some finite groups
    Dovermann, Karl Heinz
    Flores, Daniel J.
    Giambalvo, Vincent
    [J]. MANUSCRIPTA MATHEMATICA, 2021, 165 (1-2) : 239 - 254
  • [22] Actions of algebraic groups on the spectrum of rational ideals
    Vonessen, N
    [J]. JOURNAL OF ALGEBRA, 1996, 182 (02) : 383 - 400
  • [23] Algebraic Anosov actions of nilpotent Lie groups
    Barbot, Thierry
    Maquera, Carlos
    [J]. TOPOLOGY AND ITS APPLICATIONS, 2013, 160 (01) : 199 - 219
  • [24] Galois actions on homotopy groups of algebraic varieties
    Pridham, Jonathan P.
    [J]. GEOMETRY & TOPOLOGY, 2011, 15 (01) : 501 - 607
  • [25] Homoclinic Points of Principal Algebraic Actions
    Goll, Martin
    Verbitskiy, Evgeny
    [J]. MACROSCOPIC AND LARGE SCALE PHENOMENA: COARSE GRAINING, MEAN FIELD LIMITS AND ERGODICITY, 2016, 3 : 251 - 292
  • [26] The nonexistence of expansive actions of groups with subexponential growth on Suslinian continua
    Liang, Bingbing
    Shi, Enhui
    Xie, Zhiwen
    Xu, Hui
    [J]. TOPOLOGY AND ITS APPLICATIONS, 2024, 343
  • [27] Expansive actions of automorphisms of locally compact groups G on SubG
    Prajapati, Manoj B.
    Shah, Riddhi
    [J]. MONATSHEFTE FUR MATHEMATIK, 2020, 193 (01): : 129 - 142
  • [28] Some Basic Results on Actions of Nonaffine Algebraic Groups
    Brion, Michel
    [J]. SYMMETRY AND SPACES: IN HONOR OF GERRY SCHWARZ, 2010, 278 : 1 - 34
  • [29] Actions of solvable algebraic groups on central simple algebras
    Vonessen, Nikolaus
    [J]. ALGEBRAS AND REPRESENTATION THEORY, 2007, 10 (05) : 413 - 427
  • [30] Fixed point spaces in actions of exceptional algebraic groups
    Lawther, R
    Liebeck, MW
    Seitz, GM
    [J]. PACIFIC JOURNAL OF MATHEMATICS, 2002, 205 (02) : 339 - 391