On R-conjugate-permutability of sylow subgroups

被引:0
|
作者
Xianhe Zhao
Ruifang Chen
机构
[1] Henan Normal University,Henan Engineering Laboratory for Big Data Statistical Analysis and Optimal Control, School of Mathematics and Information Sciences
来源
关键词
-conjugate-permutable subgroup; nilpotent group; quasinilpotent group; Sylow subgroup; 20D10; 20D20;
D O I
暂无
中图分类号
学科分类号
摘要
A subgroup H of a finite group G is said to be conjugate-permutable if HHg = HgH for all g ∈ G. More generaly, if we limit the element g to a subgroup R of G, then we say that the subgroup H is R-conjugate-permutable. By means of the R-conjugatepermutable subgroups, we investigate the relationship between the nilpotence of G and the R-conjugate-permutability of the Sylow subgroups of A and B under the condition that G = AB, where A and B are subgroups of G. Some results known in the literature are improved and generalized in the paper.
引用
收藏
页码:111 / 117
页数:6
相关论文
共 50 条
  • [31] Minimality and sylow-permutability in locally finite groups
    Robinson D.J.S.
    Ukrainian Mathematical Journal, 2002, 54 (6) : 1038 - 1049
  • [32] SOME SYLOW SUBGROUPS
    KOVACS, LG
    NEUMANN, BH
    DEVRIES, H
    PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL AND PHYSICAL SCIENCES, 1961, 260 (1300) : 304 - +
  • [33] On the permutability of n-maximal subgroups with Schmidt subgroups
    Knyagina, V. N.
    Monakhov, V. S.
    TRUDY INSTITUTA MATEMATIKI I MEKHANIKI URO RAN, 2012, 18 (03): : 125 - 130
  • [34] Non-permutability Graph of Subgroups
    Seid Kassaw Muhie
    Daniele Ettore Otera
    Francesco G. Russo
    Bulletin of the Malaysian Mathematical Sciences Society, 2021, 44 : 3875 - 3894
  • [35] On finite soluble groups in which Sylow permutability is a transitive relation
    Ballester-Bolinches, A
    Esteban-Romero, R
    ACTA MATHEMATICA HUNGARICA, 2003, 101 (03) : 193 - 202
  • [36] On finite soluble groups in which Sylow permutability is a transitive relation
    A. Ballester-Bolinches
    R. Esteban-Romero
    Acta Mathematica Hungarica, 2003, 101 : 193 - 202
  • [37] NOTE ON ORTHOGONALITY AND PERMUTABILITY OF SUBNORMAL SUBGROUPS
    LENNOX, JC
    PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY-MATHEMATICAL AND PHYSICAL SCIENCES, 1972, 72 (NOV): : 351 - &
  • [38] PLANARITY OF PERMUTABILITY GRAPHS OF SUBGROUPS OF GROUPS
    Rajkumar, R.
    Devi, P.
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2014, 13 (03)
  • [39] Pronormal and subnormal subgroups and permutability.
    Beidleman, J
    Heineken, H
    BOLLETTINO DELLA UNIONE MATEMATICA ITALIANA, 2003, 6B (03): : 605 - 615
  • [40] Non-permutability Graph of Subgroups
    Muhie, Seid Kassaw
    Otera, Daniele Ettore
    Russo, Francesco G.
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2021, 44 (06) : 3875 - 3894