Positivity for the clamped plate equation under high tension

被引:0
|
作者
Sascha Eichmann
Reiner M. Schätzle
机构
[1] Fachbereich Mathematik der Eberhard-Karls-Universität Tübingen,
来源
关键词
Bi-Laplace equation; Maximum principle; High tension; 35B09; 35B30; 35B50; 35J40;
D O I
暂无
中图分类号
学科分类号
摘要
In this article, we consider positivity issues for the clamped plate equation with high tension γ>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma >0$$\end{document}. This equation is given by Δ2u-γΔu=f\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta ^2u - \gamma \Delta u=f$$\end{document} under clamped boundary conditions. Here, we show that given a positive f, i.e. upwards pushing, we find a γ0>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma _0>0$$\end{document} such that for all γ≥γ0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma \ge \gamma _0$$\end{document} the bending u is indeed positive. This γ0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma _0$$\end{document} only depends on the domain and the ratio of the L1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^1$$\end{document} and L∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^\infty $$\end{document} norm of f. In contrast to a recent result by Cassani and Tarsia, our approach is valid in all dimensions.
引用
收藏
页码:2001 / 2020
页数:19
相关论文
共 50 条
  • [1] Positivity for the clamped plate equation under high tension
    Eichmann, Sascha
    Schaetzle, Reiner M.
    ANNALI DI MATEMATICA PURA ED APPLICATA, 2022, 201 (04) : 2001 - 2020
  • [2] The equation of the vibrations of a clamped plate
    Weinstein, A
    COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES, 1936, 202 : 1899 - 1901
  • [3] The clamped-plate equation for the limaçon
    Anna Dall’Acqua
    Guido Sweers
    Annali di Matematica Pura ed Applicata (1923 -), 2005, 184 : 361 - 374
  • [4] The clamped-plate equation for the limacon
    Dall'Acqua, Anna
    Sweers, Guido
    ANNALI DI MATEMATICA PURA ED APPLICATA, 2005, 184 (03) : 361 - 374
  • [5] Positivity properties for the clamped plate boundary problem on the ellipse and strip
    Render, Hermann
    Ghergu, Marius
    MATHEMATISCHE NACHRICHTEN, 2012, 285 (8-9) : 1052 - 1062
  • [6] TENSION OF A CLAMPED RECTANGULAR PLATE CONTAINING A CENTRAL CRACK
    汤任基
    王怡清
    Applied Mathematics and Mechanics(English Edition), 1988, (09) : 849 - 857
  • [7] CLAMPED ANNULAR PLATE UNDER A CONCENTRATED FORCE
    AMON, R
    WIDERA, OE
    AIAA JOURNAL, 1969, 7 (01) : 151 - &
  • [8] Frequency equation for the in-plane vibration of a clamped circular plate
    Park, Chan Il
    JOURNAL OF SOUND AND VIBRATION, 2008, 313 (1-2) : 325 - 333
  • [9] ANALYSIS OF A CLAMPED SKEW PLATE UNDER UNIFORM LOADING
    KALE, CS
    RAO, BSR
    GOPALACH.S
    AIAA JOURNAL, 1972, 10 (05) : 695 - &
  • [10] DYNAMICS OF A CLAMPED RIBBED PLATE UNDER MOVING LOADS
    Antufiev, Boris A.
    Egorova, Olga, V
    Orekhov, Alexander A.
    Kuznetsova, Elena L.
    PERIODICO TCHE QUIMICA, 2018, 15 : 368 - 376