The clamped-plate equation for the limacon

被引:13
|
作者
Dall'Acqua, Anna [1 ]
Sweers, Guido [1 ]
机构
[1] Delft Univ Technol, ITS Fac, Dept Appl Math Anal, NL-2600 GA Delft, Netherlands
关键词
clamped plate; biharmonic; positivity; nonconvex;
D O I
10.1007/s10231-004-0121-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Hadamard claimed in 1907 that the clamped-plate equation is positivity preserving for domains which are bounded by a Lima on de Pascal. We will show that this claim is false in its full generality. However, we will also prove that there are nonconvex limacons for which the clamped-plate equation has the sign-preserving property. In fact we will give an explicit bound for the parameter of the lima on where sign change may occur.
引用
收藏
页码:361 / 374
页数:14
相关论文
共 50 条
  • [1] The clamped-plate equation for the limaçon
    Anna Dall’Acqua
    Guido Sweers
    Annali di Matematica Pura ed Applicata (1923 -), 2005, 184 : 361 - 374
  • [2] Conformal analysis of the fundamental frequency of elastic clamped-plate vibration
    School of Mechanical and Electric Control Engineering, Beijing Jiaotong University, Beijing 100044, China
    Gongcheng Lixue, 2006, 10 (73-76):
  • [3] Fundamental frequency and testing mode of complicated elastic clamped-plate vibration
    Qi H.
    Guan Y.
    Frontiers of Mechanical Engineering in China, 2008, 3 (4): : 360 - 364
  • [4] Groupwise non-rigid registration using polyharmonic clamped-plate splines
    Marsland, S
    Twining, CJ
    Taylor, CJ
    MEDICAL IMAGE COMPUTING AND COMPUTER-ASSISTED INTERVENTION - MICCAI 2003, PT 2, 2003, 2879 : 771 - 779
  • [5] Sign change for the Green function and for the first eigenfunction of equations of clamped-plate type
    Grunau, HC
    Sweers, G
    ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1999, 150 (02) : 179 - 190
  • [6] Sign Change for the Green Function¶and for the First Eigenfunction¶of Equations of Clamped-Plate Type
    Hans-Christoph Grunau
    Guido Sweers
    Archive for Rational Mechanics and Analysis, 1999, 150 : 179 - 190
  • [7] The equation of the vibrations of a clamped plate
    Weinstein, A
    COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES, 1936, 202 : 1899 - 1901
  • [8] Positivity for the clamped plate equation under high tension
    Eichmann, Sascha
    Schaetzle, Reiner M.
    ANNALI DI MATEMATICA PURA ED APPLICATA, 2022, 201 (04) : 2001 - 2020
  • [9] Positivity for the clamped plate equation under high tension
    Sascha Eichmann
    Reiner M. Schätzle
    Annali di Matematica Pura ed Applicata (1923 -), 2022, 201 (4): : 2001 - 2020
  • [10] Frequency equation for the in-plane vibration of a clamped circular plate
    Park, Chan Il
    JOURNAL OF SOUND AND VIBRATION, 2008, 313 (1-2) : 325 - 333