Energy balance of a Bose gas in a curved space-time

被引:0
|
作者
Tonatiuh Matos
Ana Avilez
Tula Bernal
Pierre-Henri Chavanis
机构
[1] Centro de Investigación y de Estudios Avanzados del IPN,Departamento de Física
[2] Ciudad Universitaria,Facultad de Ciencias Físico
[3] Benemérita Universidad Autónoma de Puebla,Matemáticas
[4] Universidad Autónoma Chapingo,Laboratoire de Physique Théorique, CNRS
[5] Université Paul Sabatier,undefined
来源
关键词
Scalar field theory; Klein–Gordon equation; Gross–Pitaevskii equation; Bose–Einstein condensates; Bohm’s interpretation; Boson stars; Dark matter; General relativity; Quantum mechanics;
D O I
暂无
中图分类号
学科分类号
摘要
Classical solutions of the Klein–Gordon equation are used in astrophysics to model galactic halos of scalar field dark matter and compact objects such as cores of neutron stars. These bound solutions are interpreted as Bose–Einstein condensates whose particle number density is governed by the Gross–Pitaevskii (GP) equation. It is well known that the Gross–Pitaevskii–Poisson (GPP) system arises as the non-relativistic limit of the Klein–Gordon–Einstein (KGE) equations and, conversely, the KGE system may be interpreted as a generalization of the GPP equations in a curved space-time. In the present work, we consider a 3+1 ADM foliation of the space-time in order to construct a general-relativistic version of the GP equation. Besides, we derive a general energy balance equation for the boson gas in the hydrodynamic variables, where different energy potentials are identified as kinetic, quantum, electromagnetic and gravitational. In addition, we find a correspondence between the energy potentials in the balance equation and actual components of the scalar energy–momentum tensor. We also study the Newtonian limit of the hydrodynamic formulation and the balance equation. As an illustrative case, we study the effects in the energy potentials of a relativistic correction in the GP equation.
引用
收藏
相关论文
共 50 条
  • [31] ON THE HAMILTONIAN QED IN CURVED SPACE-TIME
    VASSILEVICH, DV
    NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA A-NUCLEI PARTICLES AND FIELDS, 1991, 104 (05): : 743 - 754
  • [32] MASSES AND SPINS IN CURVED SPACE-TIME
    MALIN, S
    PHYSICAL REVIEW D, 1974, 9 (12) : 3228 - 3234
  • [33] ON THE DIRAC EQUATION IN CURVED SPACE-TIME
    Pollock, M. D.
    ACTA PHYSICA POLONICA B, 2010, 41 (08): : 1827 - 1846
  • [34] Matter fields in curved space-time
    Viet, NA
    Wali, KC
    THEORETICAL HIGH ENERGY PHYSICS: MRST 2000, 2000, 541 : 27 - 39
  • [35] SYNCHROTRON RADIATION IN A CURVED SPACE-TIME
    SOKOLOV, AA
    TERNOV, IM
    ALIYEV, AN
    GALTSOV, DV
    IZVESTIYA VYSSHIKH UCHEBNYKH ZAVEDENII FIZIKA, 1983, 26 (01): : 37 - 42
  • [36] WAVE EQUATIONS IN CURVED SPACE-TIME
    MAJUMDAR, SD
    PHYSICAL REVIEW, 1962, 126 (06): : 2227 - &
  • [37] DEFINITION OF THE VACUUM IN THE CURVED SPACE-TIME
    BUKHBINDER, IL
    GITMAN, DM
    IZVESTIYA VYSSHIKH UCHEBNYKH ZAVEDENII FIZIKA, 1979, (07): : 16 - 21
  • [38] ON THE ENERGY-MOMENTUM TENSOR AT FINITE TEMPERATURE IN CURVED SPACE-TIME
    NAKAZAWA, N
    FUKUYAMA, T
    NUCLEAR PHYSICS B, 1985, 252 (04) : 621 - 634
  • [39] RYDBERG ATOMS IN CURVED SPACE-TIME
    PINTO, F
    PHYSICAL REVIEW LETTERS, 1993, 70 (25) : 3839 - 3843
  • [40] CONFORMAL ANOMALIES IN CURVED SPACE-TIME
    DUNCAN, A
    PHYSICS LETTERS B, 1977, 66 (02) : 170 - 172