Water demand for electricity in deep decarbonisation scenarios: a multi-model assessment

被引:0
|
作者
I. Mouratiadou
M. Bevione
D. L. Bijl
L. Drouet
M. Hejazi
S. Mima
M. Pehl
G. Luderer
机构
[1] Potsdam Institute for Climate Impact Research (PIK),Copernicus Institute of Sustainable Development
[2] Member of the Leibniz Association,undefined
[3] Utrecht University,undefined
[4] Fondazione Eni Enrico Mattei (FEEM) and Centro Euromediterraneo sui Cambiamenti Climatici (CMCC),undefined
[5] Joint Global Change Research Institute,undefined
[6] Pacific Northwest National Laboratory,undefined
[7] Laboratoire d’économie appliquées de Grenoble,undefined
[8] CNRS,undefined
[9] Grenoble INP,undefined
[10] INRA,undefined
[11] Univ. Grenoble-Alpes,undefined
来源
Climatic Change | 2018年 / 147卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
This study assesses the effects of deep electricity decarbonisation and shifts in the choice of power plant cooling technologies on global electricity water demand, using a suite of five integrated assessment models. We find that electricity sector decarbonisation results in co-benefits for water resources primarily due to the phase-out of water-intensive coal-based thermoelectric power generation, although these co-benefits vary substantially across decarbonisation scenarios. Wind and solar photovoltaic power represent a win-win option for both climate and water resources, but further expansion of nuclear or fossil- and biomass-fuelled power plants with carbon capture and storage may result in increased pressures on the water environment. Further to these results, the paper provides insights on the most crucial factors of uncertainty with regards to future estimates of water demand. These estimates varied substantially across models in scenarios where the effects of decarbonisation on the electricity mix were less clear-cut. Future thermal and water efficiency improvements of power generation technologies and demand-side energy efficiency improvements were also identified to be important factors of uncertainty. We conclude that in order to ensure positive effects of decarbonisation on water resources, climate policy should be combined with technology-specific energy and/or water policies.
引用
收藏
页码:91 / 106
页数:15
相关论文
共 50 条
  • [21] Mediterranean extreme precipitation: a multi-model assessment
    Leone Cavicchia
    Enrico Scoccimarro
    Silvio Gualdi
    Paola Marson
    Bodo Ahrens
    Ségolène Berthou
    Dario Conte
    Alessandro Dell’Aquila
    Philippe Drobinski
    Vladimir Djurdjevic
    Clotilde Dubois
    Clemente Gallardo
    Laurent Li
    Paolo Oddo
    Antonella Sanna
    Csaba Torma
    [J]. Climate Dynamics, 2018, 51 : 901 - 913
  • [22] A multi-model assessment of pollution transport to the Arctic
    Shindell, D. T.
    Chin, M.
    Dentener, F.
    Doherty, R. M.
    Faluvegi, G.
    Fiore, A. M.
    Hess, P.
    Koch, D. M.
    MacKenzie, I. A.
    Sanderson, M. G.
    Schultz, M. G.
    Schulz, M.
    Stevenson, D. S.
    Teich, H.
    Textor, C.
    Wild, O.
    Bergmann, D. J.
    Bey, I.
    Bian, H.
    Cuvelier, C.
    Duncan, B. N.
    Folberth, G.
    Horowitz, L. W.
    Jonson, J.
    Kaminski, J. W.
    Marmer, E.
    Park, R.
    Pringle, K. J.
    Schroeder, S.
    Szopa, S.
    Takemura, T.
    Zeng, G.
    Keating, T. J.
    Zuber, A.
    [J]. ATMOSPHERIC CHEMISTRY AND PHYSICS, 2008, 8 (17) : 5353 - 5372
  • [23] A multi-model assessment of last interglacial temperatures
    Lunt, D. J.
    Abe-Ouchi, A.
    Bakker, P.
    Berger, A.
    Braconnot, P.
    Charbit, S.
    Fischer, N.
    Herold, N.
    Jungclaus, J. H.
    Khon, V. C.
    Krebs-Kanzow, U.
    Langebroek, P. M.
    Lohmann, G.
    Nisancioglu, K. H.
    Otto-Bliesner, B. L.
    Park, W.
    Pfeiffer, M.
    Phipps, S. J.
    Prange, M.
    Rachmayani, R.
    Renssen, H.
    Rosenbloom, N.
    Schneider, B.
    Stone, E. J.
    Takahashi, K.
    Wei, W.
    Yin, Q.
    Zhang, Z. S.
    [J]. CLIMATE OF THE PAST, 2013, 9 (02) : 699 - 717
  • [24] A multi-model approach to investigate security of supply in the German electricity market
    Hladik, Dirk
    Fraunholz, Christoph
    Manz, Pia
    Keuhnbach, Matthias
    Kunze, Robert
    [J]. 2018 15TH INTERNATIONAL CONFERENCE ON THE EUROPEAN ENERGY MARKET (EEM), 2018,
  • [25] Multi-Model Coupling Water Demand Prediction Optimization Method for Megacities Based on Time Series Decomposition
    Liu, Xin
    Sang, Xuefeng
    Chang, Jiaxuan
    Zheng, Yang
    [J]. WATER RESOURCES MANAGEMENT, 2021, 35 (12) : 4021 - 4041
  • [26] Geometric Multi-Model Fitting by Deep Reinforcement Learning
    Zhang, Zongliang
    Zeng, Hongbin
    Li, Jonathan
    Chen, Yiping
    Yang, Chenhui
    Wang, Cheng
    [J]. THIRTY-THIRD AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE / THIRTY-FIRST INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE CONFERENCE / NINTH AAAI SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2019, : 10081 - 10082
  • [27] Multi-Model Coupling Water Demand Prediction Optimization Method for Megacities Based on Time Series Decomposition
    Xin Liu
    Xuefeng Sang
    Jiaxuan Chang
    Yang Zheng
    [J]. Water Resources Management, 2021, 35 : 4021 - 4041
  • [28] Reduced Deep Convection and Bottom Water Formation Due To Antarctic Meltwater in a Multi-Model Ensemble
    Chen, Jia-Jia
    Swart, Neil C.
    Beadling, Rebecca
    Cheng, Xuhua
    Hattermann, Tore
    Juling, Andre
    Li, Qian
    Marshall, John
    Martin, Torge
    Muilwijk, Morven
    Pauling, Andrew G.
    Purich, Ariaan
    Smith, Inga J.
    Thomas, Max
    [J]. GEOPHYSICAL RESEARCH LETTERS, 2023, 50 (24)
  • [29] Fossil materials demand within deep decarbonization scenarios: A feasibility assessment
    Cardoso, Gabriel
    Szklo, Alexandre
    Portugal-Pereira, Joana
    Rochedo, Pedro R. R.
    Schaeffer, Roberto
    [J]. ENERGY STRATEGY REVIEWS, 2024, 54
  • [30] Multi-Model Fusion Demand Forecasting Framework Based on Attention Mechanism
    Lei, Chunrui
    Zhang, Heng
    Wang, Zhigang
    Miao, Qiang
    [J]. Processes, 2024, 12 (11)