A weighted randomized sparse Kaczmarz method for solving linear systems

被引:0
|
作者
Lu Zhang
Ziyang Yuan
Hongxia Wang
Hui Zhang
机构
[1] National University of Defense Technology,Department of Mathematics
[2] Academy of Military Science,undefined
来源
关键词
Weighted sampling rule; Bregman distance; Bregman projection; Sparse solution; Kaczmarz method; Linear convergence; 65F10; 65K10;
D O I
暂无
中图分类号
学科分类号
摘要
The randomized sparse Kaczmarz method, designed for seeking the sparse solutions of the linear systems Ax=b\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Ax=b$$\end{document}, selects the i-th projection hyperplane with likelihood proportional to ‖ai‖22\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Vert a_{i}\Vert _2^2$$\end{document}, where aiT\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$a_{i}^{\mathrm{T}}$$\end{document} is the i-th row of A. In this work, we propose a weighted randomized sparse Kaczmarz method, which selects the i-th projection hyperplane with probability proportional to |⟨ai,xk⟩-bi|p\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$|\langle a_{i},x_{k}\rangle -b_{i}|^p$$\end{document}, where 0<p<∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0<p<\infty $$\end{document}, for possible acceleration. It bridges the randomized Kaczmarz and greedy Kaczmarz by parameter p. Theoretically, we show its linear convergence rate in expectation with respect to the Bregman distance in the noiseless and noisy cases, which is at least as efficient as the randomized sparse Kaczmarz method. The superiority of the proposed method is demonstrated via a group of numerical experiments.
引用
收藏
相关论文
共 50 条
  • [21] Accelerated Greedy Randomized Kaczmarz Algorithm for Solving Linear Systems
    Liu, Yong
    Liu, Shimin
    Zhang, Zhiyong
    [J]. IAENG International Journal of Computer Science, 2023, 50 (03)
  • [22] Inertial randomized Kaczmarz algorithms for solving coherent linear systems
    He, Songnian
    Wang, Ziting
    Dong, Qiao-Li
    [J]. NUMERICAL ALGORITHMS, 2024,
  • [23] A count sketch maximal weighted residual Kaczmarz method for solving highly overdetermined linear systems
    Zhang, Yanjun
    Li, Hanyu
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2021, 410
  • [24] A greedy average block sparse Kaczmarz method for sparse solutions of linear systems
    Xiao, A. -Qin
    Yin, Jun-Feng
    [J]. APPLIED MATHEMATICS LETTERS, 2024, 153
  • [25] A partially block randomized extended Kaczmarz method for solving large overdetermined inconsistent linear systems
    Yin, Feng
    Zhang, Bu-Yue
    Huang, Guang-Xin
    [J]. AIMS MATHEMATICS, 2023, 8 (08): : 18512 - 18527
  • [26] A randomized block extended Kaczmarz method with hybrid partitions for solving large inconsistent linear systems
    Jiang, Xiang-Long
    Zhang, Ke
    [J]. APPLIED MATHEMATICS LETTERS, 2024, 152
  • [27] A NOTE ON THE RANDOMIZED KACZMARZ ALGORITHM FOR SOLVING DOUBLY NOISY LINEAR SYSTEMS
    Bergou, El Houcine
    Boucherouite, Soumia
    Dutta, Aritra
    Li, Xin
    Ma, Anna
    [J]. SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2024, 45 (02) : 992 - 1006
  • [28] On greedy randomized block Kaczmarz method for consistent linear systems
    Liu, Yong
    Gu, Chuan-Qing
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 2021, 616 : 178 - 200
  • [29] Randomized Kaczmarz method with adaptive stepsizes for inconsistent linear systems
    Zeng, Yun
    Han, Deren
    Su, Yansheng
    Xie, Jiaxin
    [J]. NUMERICAL ALGORITHMS, 2023, 94 (03) : 1403 - 1420
  • [30] Randomized Kaczmarz method with adaptive stepsizes for inconsistent linear systems
    Yun Zeng
    Deren Han
    Yansheng Su
    Jiaxin Xie
    [J]. Numerical Algorithms, 2023, 94 : 1403 - 1420