On the behavior in time of solutions to motion of Non-Newtonian fluids

被引:0
|
作者
Gioconda Moscariello
Maria Michaela Porzio
机构
[1] Università degli Studi di Napoli “Federico II”,Dipartimento di Matematica e Applicazioni “R. Caccioppoli”
[2] Sapienza Università di Roma,Dipartimento di Matematica “G. Castelnuovo”
关键词
Decay estimates; Non-Newtonian fluids; Dirichlet boundary initial value problems; weak solutions; 76D03; 35Q35; 76D07;
D O I
暂无
中图分类号
学科分类号
摘要
We study the behavior on time of weak solutions to the non-stationary motion of an incompressible fluid with shear rate dependent viscosity in bounded domains when the initial velocity u0∈L2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${u}_0 {\in } {L}^2$$\end{document}. Our estimates show the different behavior of the solution as the growth condition of the stress tensor varies. In the “dilatant” or “shear thickening” case we prove that the decay rate does not depend on u0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$u_0$$\end{document}, then our estimates also apply for irregular initial velocity.
引用
收藏
相关论文
共 50 条