Unstable structures definable in o-minimal theories

被引:0
|
作者
Assaf Hasson
Alf Onshuus
机构
[1] University of Oxford,Mathematical Institute
[2] Ben Gurion University of the Negev,Department of Mathematics
[3] Universidad de los Andes,Departemento de Matemáticas
来源
Selecta Mathematica | 2010年 / 16卷
关键词
03C45; 03C64; 03C98; 14P05;
D O I
暂无
中图分类号
学科分类号
摘要
Let \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {M}}$$\end{document} be a dense o-minimal structure, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {N}}$$\end{document} an unstable structure interpretable in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {M}}$$\end{document}. Then there exists X, definable in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {N}^{eq}}$$\end{document}, such that X, with the induced \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {N}}$$\end{document}-structure, is linearly ordered and o-minimal with respect to that ordering. As a consequence we obtain a classification, along the lines of Zilber’s trichotomy, of unstable þ-minimal types in structures interpretable in o-minimal theories.
引用
收藏
页码:121 / 143
页数:22
相关论文
共 50 条