Profinite groups with many commuting pairs or involutions

被引:0
|
作者
L. Lévai
L. Pyber
机构
[1] Alfrèd Rènyi Institute of Mathematics,
[2] Hungarian Academy of Sciences,undefined
[3] P.O.B. 127,undefined
[4] H-1364 Budapest,undefined
[5] Hungary,undefined
来源
Archiv der Mathematik | 2000年 / 75卷
关键词
Open Subset; Positive Measure; Haar Measure; Nonempty Open Subset; Profinite Group;
D O I
暂无
中图分类号
学科分类号
摘要
We prove that if the set of commuting pairs of a profinite group G has positive Haar measure then G is abelian by finite. Using this we show that the set I of involutions has positive measure exactly if I contains a nonempty open subset of G.
引用
收藏
页码:1 / 7
页数:6
相关论文
共 50 条
  • [41] SOME PROPERTIES OF COMMUTING AND ANTI-COMMUTING m-INVOLUTIONS
    Mark Yasuda
    Acta Mathematica Scientia, 2012, 32 (02) : 631 - 644
  • [42] Small profinite groups
    Newelski, L
    JOURNAL OF SYMBOLIC LOGIC, 2001, 66 (02) : 859 - 872
  • [43] Profinite quantum groups
    Ng, CK
    MATHEMATISCHE NACHRICHTEN, 2003, 254 : 197 - 217
  • [44] LOCALIZATION OF PROFINITE GROUPS
    HERFORT, W
    RIBENBOIM, P
    ARCHIV DER MATHEMATIK, 1984, 42 (01) : 1 - 15
  • [45] On quasifree profinite groups
    Ribes, Luis
    Stevenson, Katherine
    Zalesskii, Pavel
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2007, 135 (09) : 2669 - 2676
  • [46] COHOMOLOGIES AND PROFINITE GROUPS
    SZALAJKA, WS
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1973, 20 (01): : A85 - A85
  • [47] Profinite Cappitt groups
    Porto, A. L. P.
    QUAESTIONES MATHEMATICAE, 2021, 44 (03) : 307 - 311
  • [48] On small profinite groups
    Helbig, Patrick
    JOURNAL OF GROUP THEORY, 2017, 20 (05) : 987 - 997
  • [49] ON PROFINITE POLYADIC GROUPS
    Shahryari, M.
    Rostami, M.
    SIBERIAN ELECTRONIC MATHEMATICAL REPORTS-SIBIRSKIE ELEKTRONNYE MATEMATICHESKIE IZVESTIYA, 2023, 20 (02): : 814 - 823
  • [50] Endomorphisms of profinite groups
    Reid, Colin D.
    GROUPS GEOMETRY AND DYNAMICS, 2014, 8 (02) : 553 - 564