Non-Abelian Floquet braiding and anomalous Dirac string phase in periodically driven systems

被引:0
|
作者
Robert-Jan Slager
Adrien Bouhon
F. Nur Ünal
机构
[1] University of Cambridge,TCM Group, Cavendish Laboratory
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
While a significant fraction of topological materials has been characterized using symmetry requirements1–4, the past two years have witnessed the rise of novel multi-gap dependent topological states5–9, the properties of which go beyond these approaches and are yet to be fully explored. Although already of active interest at equilibrium10–15, we show that the combination of out-of-equilibrium processes and multi-gap topological insights galvanize a new direction within topological phases of matter. We show that periodic driving can induce anomalous multi-gap topological properties that have no static counterpart. In particular, we identify Floquet-induced non-Abelian braiding, which in turn leads to a phase characterized by an anomalous Euler class, being the prime example of a multi-gap topological invariant. Most strikingly, we also retrieve the first example of an ‘anomalous Dirac string phase’. This gapped out-of-equilibrium phase features an unconventional Dirac string configuration that physically manifests itself via anomalous edge states on the boundary. Our results not only provide a stepping stone for the exploration of intrinsically dynamical and experimentally viable multi-gap topological phases, but also demonstrate periodic driving as a powerful way to observe these non-Abelian braiding processes notably in quantum simulators.
引用
收藏
相关论文
共 50 条
  • [21] Non-Abelian Optical Lattices: Anomalous Quantum Hall Effect and Dirac Fermions
    Goldman, N.
    Kubasiak, A.
    Bermudez, A.
    Gaspard, P.
    Lewenstein, M.
    Martin-Delgado, M. A.
    PHYSICAL REVIEW LETTERS, 2009, 103 (03)
  • [22] Minimal non-abelian nodal braiding in ideal metamaterials
    Qiu, Huahui
    Zhang, Qicheng
    Liu, Tingzhi
    Fan, Xiying
    Zhang, Fan
    Qiu, Chunyin
    NATURE COMMUNICATIONS, 2023, 14 (01)
  • [23] Simulation of Non-Abelian Braiding in Majorana Time Crystals
    Bomantara, Raditya Weda
    Gong, Jiangbin
    PHYSICAL REVIEW LETTERS, 2018, 120 (23)
  • [24] Braiding of non-Abelian anyons using pairwise interactions
    Burrello, M.
    van Heck, B.
    Akhmerov, A. R.
    PHYSICAL REVIEW A, 2013, 87 (02):
  • [26] Minimal non-abelian nodal braiding in ideal metamaterials
    Huahui Qiu
    Qicheng Zhang
    Tingzhi Liu
    Xiying Fan
    Fan Zhang
    Chunyin Qiu
    Nature Communications, 14
  • [27] Twist defects and projective non-Abelian braiding statistics
    Barkeshli, Maissam
    Jian, Chao-Ming
    Qi, Xiao-Liang
    PHYSICAL REVIEW B, 2013, 87 (04)
  • [28] Non-Abelian braiding of graph vertices in a superconducting processor
    Andersen, T. I.
    Lensky, Y. D.
    Kechedzhi, K.
    Drozdov, I. K.
    Bengtsson, A.
    Hong, S.
    Morvan, A.
    Mi, X.
    Opremcak, A.
    Acharya, R.
    Allen, R.
    Ansmann, M.
    Arute, F.
    Arya, K.
    Asfaw, A.
    Atalaya, J.
    Babbush, R.
    Bacon, D.
    Bardin, J. C.
    Bortoli, G.
    Bourassa, A.
    Bovaird, J.
    Brill, L.
    Broughton, M.
    Buckley, B. B.
    Buell, D. A.
    Burger, T.
    Burkett, B.
    Bushnell, N.
    Chen, Z.
    Chiaro, B.
    Chik, D.
    Chou, C.
    Cogan, J.
    Collins, R.
    Conner, P.
    Courtney, W.
    Crook, A. L.
    Curtin, B.
    Debroy, D. M.
    Del Toro Barba, A.
    Demura, S.
    Dunsworth, A.
    Eppens, D.
    Erickson, C.
    Faoro, L.
    Farhi, E.
    Fatemi, R.
    Ferreira, V. S.
    Burgos, L. F.
    NATURE, 2023, 618 (7964) : 264 - +
  • [29] Non-Abelian braiding of Fibonacci anyons with a superconducting processor
    Xu, Shibo
    Sun, Zheng-Zhi
    Wang, Ke
    Li, Hekang
    Zhu, Zitian
    Dong, Hang
    Deng, Jinfeng
    Zhang, Xu
    Chen, Jiachen
    Wu, Yaozu
    Zhang, Chuanyu
    Jin, Feitong
    Zhu, Xuhao
    Gao, Yu
    Zhang, Aosai
    Wang, Ning
    Zou, Yiren
    Tan, Ziqi
    Shen, Fanhao
    Zhong, Jiarun
    Bao, Zehang
    Li, Weikang
    Jiang, Wenjie
    Yu, Li-Wei
    Song, Zixuan
    Zhang, Pengfei
    Xiang, Liang
    Guo, Qiujiang
    Wang, Zhen
    Song, Chao
    Wang, H.
    Deng, Dong-Ling
    NATURE PHYSICS, 2024, 20 (09) : 1469 - 1475
  • [30] Non-Abelian string of a finite length
    Monin, S.
    Shifman, M.
    Yung, A.
    PHYSICAL REVIEW D, 2015, 92 (02)