Multisensor fusion-based gas detection module

被引:1
|
作者
Guo J.-H. [1 ]
Chien I.-C. [2 ]
Su K.-L. [3 ]
Wu C.-J. [3 ]
机构
[1] Graduate School of Engineering Science and Technology, National Yunlin University of Science and Technology, Douliou, Yunlin
[2] Department of Mechanical Engineering, National Central University, Jhongli, Taoyuan
[3] Department of Electrical Engineering, National Yunlin University of Science and Technology, Douliou
关键词
Intelligent home; Logical filter method; Multisensor fusion algorithms;
D O I
10.1007/s10015-010-0875-7
中图分类号
学科分类号
摘要
This article develops a gas detection module for the intelligent home. The module uses eight gas sensors to detect the environment of the home and building. The gas sensors of the module have an NH3 sensor, an air pollution sensor, an alcohol sensor, an HS sensor, a smoke sensor, a CO sensor, an LPG sensor, and a natural gas sensor, and can classify more than eight types of gas using multisensor fusion algorithms. In the logical filter method, either AND or OR filters can be implemented in the gas detection module. Then we can calculate the system's reliability using the AND and OR filters, and classify the type of gas in the environment. The controller of the gas detection module is a HOLTEK microchip. The module can communicate with the supervised computer via a wire interface or a wireless RF interface, and can caution the user via a voice module. Finally, we present some experimental results to measure unknown gases using the gas detection module on the security system of an intelligent building and home. © ISAROB 2011.
引用
收藏
页码:16 / 20
页数:4
相关论文
共 50 条
  • [41] Fusion-Based Process Discovery
    Dahari, Yossi
    Gal, Avigdor
    Senderovich, Arik
    Weidlich, Matthias
    [J]. ADVANCED INFORMATION SYSTEMS ENGINEERING, CAISE 2018, 2018, 10816 : 291 - 307
  • [42] Multisensor data fusion for fire detection
    Zervas, E.
    Mpimpoudis, A.
    Anagnostopoulos, C.
    Sekkas, O.
    Hadjiefthymiades, S.
    [J]. INFORMATION FUSION, 2011, 12 (03) : 150 - 159
  • [43] A Fusion-Based Defogging Algorithm
    Chen, Ting
    Liu, Mengni
    Gao, Tao
    Cheng, Peng
    Mei, Shaohui
    Li, Yonghui
    [J]. REMOTE SENSING, 2022, 14 (02)
  • [44] Robust detection in multisensor data fusion
    Su, Huimin
    Zhang, Minglian
    [J]. Beijing Hangkong Hangtian Daxue Xuebao/Journal of Beijing University of Aeronautics and Astronautics, 25 (02): : 156 - 159
  • [45] Multisensor data fusion-based structural health monitoring for buried metallic pipelines under complicated stress states
    Minghao Li
    Xin Feng
    [J]. Journal of Civil Structural Health Monitoring, 2022, 12 : 1509 - 1521
  • [46] An Efficient Fusion-Based Defogging
    Guo, Jing-Ming
    Syue, Jin-Yu
    Radzicki, Vincent R.
    Lee, Hua
    [J]. IEEE TRANSACTIONS ON IMAGE PROCESSING, 2017, 26 (09) : 4217 - 4228
  • [47] Fusion-based register allocation
    Lueh, GY
    Gross, T
    Adl-Tabatabai, AR
    [J]. ACM TRANSACTIONS ON PROGRAMMING LANGUAGES AND SYSTEMS, 2000, 22 (03): : 431 - 470
  • [48] Image fusion-based watermarking
    Xu, Yanjie
    Xu, Luping
    [J]. Guangzi Xuebao/Acta Photonica Sinica, 2002, 31 (06):
  • [49] Fusion-based quantum computation
    Bartolucci, Sara
    Birchall, Patrick
    Bombin, Hector
    Cable, Hugo
    Dawson, Chris
    Gimeno-Segovia, Mercedes
    Johnston, Eric
    Kieling, Konrad
    Nickerson, Naomi
    Pant, Mihir
    Pastawski, Fernando
    Rudolph, Terry
    Sparrow, Chris
    [J]. NATURE COMMUNICATIONS, 2023, 14 (01)
  • [50] Exposure Fusion-Based Shadow-Insensitive Hyperspectral Target Detection
    Zhang, Shuo
    Mo, Yan
    Kang, Xudong
    Li, Shutao
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2024, 62 : 1 - 11