Influence of helicity on the turbulent Prandtl number: Two-loop approximation

被引:0
|
作者
E. Jurčišinová
M. Jurčišin
R. Remecký
机构
[1] Slovak Academy of Sciences,Institute of Experimental Physics
来源
关键词
developed turbulence; passive advection; helicity; renormalization group;
D O I
暂无
中图分类号
学科分类号
摘要
Using the field theory renormalization group technique in the two-loop approximation, we study the influence of helicity (spatial parity violation) on the turbulent Prandtl number in the model of a scalar field passively advected by the helical turbulent environment given by the stochastic Navier-Stokes equation with a self-similar Gaussian random stirring force δ-correlated in time with the correlator proportional to k4−d−2ɛ. We briefly discuss the influence of helicity on the stability of the corresponding scaling regime. We show that the presence of helicity increases the value of the turbulent Prandtl number up to 50% of its nonhelical value.
引用
收藏
页码:1573 / 1582
页数:9
相关论文
共 50 条
  • [1] Influence of helicity on the turbulent Prandtl number: Two-loop approximation
    Jurcisinova, E.
    Jurcisin, M.
    Remecky, R.
    [J]. THEORETICAL AND MATHEMATICAL PHYSICS, 2011, 169 (02) : 1573 - 1582
  • [2] Erratum to: “Influence of helicity on the turbulent Prandtl number: Two-loop approximation”
    E. Jurčišinová
    M. Jurčišin
    R. Remecký
    [J]. Theoretical and Mathematical Physics, 2012, 173 : 1776 - 1776
  • [3] Influence of helicity on the turbulent Prandtl number: Two-loop approximation (vol 169, pg 1573, 2011)
    Jurcisinova, E.
    Jurcisin, M.
    Remecky, R.
    [J]. THEORETICAL AND MATHEMATICAL PHYSICS, 2012, 173 (03) : 1776 - 1776
  • [4] Two-loop calculation of the turbulent Prandtl number
    Adzhemyan, LT
    Honkonen, J
    Kim, TL
    Sladkoff, L
    [J]. PHYSICAL REVIEW E, 2005, 71 (05)
  • [5] Turbulent magnetic Prandtl number in kinematic magnetohydrodynamic turbulence: Two-loop approximation
    Jurcisinova, E.
    Jurcisin, M.
    Remecky, R.
    [J]. PHYSICAL REVIEW E, 2011, 84 (04):
  • [6] Comment on "Two-loop calculation of the turbulent Prandtl number"
    Jurcisinova, E.
    Jurcisin, M.
    Remecky, R.
    [J]. PHYSICAL REVIEW E, 2010, 82 (02):
  • [7] Helical Turbulent Prandtl Number in the A Model of Passive Vector Advection: Two-Loop Approximation
    M. Hnatič
    P. Zalom
    [J]. Physics of Atomic Nuclei, 2018, 81 : 863 - 868
  • [8] Helical Turbulent Prandtl Number in the A Model of Passive Vector Advection: Two-Loop Approximation
    Hnatic, M.
    Zalom, P.
    [J]. PHYSICS OF ATOMIC NUCLEI, 2018, 81 (06) : 863 - 868
  • [9] Turbulent Prandtl Number in Two Spatial Dimensions: Two-Loop Renormalization Group Analysis
    Jurcisinova, E.
    Jurcisin, M.
    Remecky, M.
    [J]. THEORETICAL AND MATHEMATICAL PHYSICS, 2019, 200 (02) : 1139 - 1146
  • [10] Turbulent Prandtl Number in Two Spatial Dimensions: Two-Loop Renormalization Group Analysis
    E. Jurčišinová
    M. Jurčišin
    M. Remecký
    [J]. Theoretical and Mathematical Physics, 2019, 200 : 1139 - 1146