Comment on "Two-loop calculation of the turbulent Prandtl number"

被引:13
|
作者
Jurcisinova, E. [1 ]
Jurcisin, M. [1 ]
Remecky, R. [1 ]
机构
[1] Slovak Acad Sci, Inst Expt Phys, Kosice 04001, Slovakia
来源
PHYSICAL REVIEW E | 2010年 / 82卷 / 02期
关键词
RENORMALIZATION-GROUP APPROACH;
D O I
10.1103/PhysRevE.82.028301
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We have revised the value of the turbulent Prandtl number obtained in the model of a passive scalar advected by the velocity field driven by the stochastic Navier-Stokes equation which was calculated by L. Ts. Adzhemyan et al. [Phys. Rev. E 71, 056311 (2005)] by using the field-theoretic renormalization group approach within the two-loop approximation in the corresponding perturbative theory. It is shown that the correct two-loop contribution to the turbulent Prandtl number is essentially smaller than that calculated by Adzhemyan et al. and, as a result, the final two-loop value of the turbulent Prandtl number is Pr-t=0.7051 instead of Pr-t=0.7693. The source of discrepancy between our result and that obtained by Adzhemyan et al. is identified and discussed.
引用
收藏
页数:3
相关论文
共 50 条
  • [1] Two-loop calculation of the turbulent Prandtl number
    Adzhemyan, LT
    Honkonen, J
    Kim, TL
    Sladkoff, L
    [J]. PHYSICAL REVIEW E, 2005, 71 (05)
  • [2] Influence of helicity on the turbulent Prandtl number: Two-loop approximation
    Jurcisinova, E.
    Jurcisin, M.
    Remecky, R.
    [J]. THEORETICAL AND MATHEMATICAL PHYSICS, 2011, 169 (02) : 1573 - 1582
  • [3] Influence of helicity on the turbulent Prandtl number: Two-loop approximation
    E. Jurčišinová
    M. Jurčišin
    R. Remecký
    [J]. Theoretical and Mathematical Physics, 2011, 169 : 1573 - 1582
  • [4] Erratum to: “Influence of helicity on the turbulent Prandtl number: Two-loop approximation”
    E. Jurčišinová
    M. Jurčišin
    R. Remecký
    [J]. Theoretical and Mathematical Physics, 2012, 173 : 1776 - 1776
  • [5] Turbulent Prandtl Number in Two Spatial Dimensions: Two-Loop Renormalization Group Analysis
    Jurcisinova, E.
    Jurcisin, M.
    Remecky, M.
    [J]. THEORETICAL AND MATHEMATICAL PHYSICS, 2019, 200 (02) : 1139 - 1146
  • [6] Turbulent Prandtl Number in Two Spatial Dimensions: Two-Loop Renormalization Group Analysis
    E. Jurčišinová
    M. Jurčišin
    M. Remecký
    [J]. Theoretical and Mathematical Physics, 2019, 200 : 1139 - 1146
  • [7] Turbulent magnetic Prandtl number in kinematic magnetohydrodynamic turbulence: Two-loop approximation
    Jurcisinova, E.
    Jurcisin, M.
    Remecky, R.
    [J]. PHYSICAL REVIEW E, 2011, 84 (04):
  • [8] Helical Turbulent Prandtl Number in the A Model of Passive Vector Advection: Two-Loop Approximation
    M. Hnatič
    P. Zalom
    [J]. Physics of Atomic Nuclei, 2018, 81 : 863 - 868
  • [9] Helical Turbulent Prandtl Number in the A Model of Passive Vector Advection: Two-Loop Approximation
    Hnatic, M.
    Zalom, P.
    [J]. PHYSICS OF ATOMIC NUCLEI, 2018, 81 (06) : 863 - 868
  • [10] Turbulent Prandtl number in a model of passively advected vector field: Two-loop renormalization group result
    Jurcisinova, E.
    Jurcisin, M.
    Remecky, R.
    [J]. PHYSICAL REVIEW E, 2013, 88 (01):