Distilled GPT for source code summarization

被引:0
|
作者
Chia-Yi Su
Collin McMillan
机构
[1] University of Notre Dame,Department of Computer Science
来源
关键词
Source code summarization; Software documentation generation; Language model;
D O I
暂无
中图分类号
学科分类号
摘要
A code summary is a brief natural language description of source code. Summaries are usually only a single sentence long, and yet form the backbone of developer documentation. A short descriptions such as “changes all visible polygons to the color blue” can give a programmer a high-level idea of what code does without the effort of reading the code itself. Recently, products based on Large Language Models such as ChatGPT have demonstrated a strong ability to write these descriptions automatically. However, to use these tools, programmers must send their code to untrusted third parties for processing (e.g., via an API call). This loss of custody is not acceptable to many organizations. In this paper, we present an alternative: we train an open source model using sample output generated by GPT-\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$-$$\end{document}3.5 in a process related to knowledge distillation. Our model is small enough (350 m parameters) to be run on a single 16gb GPU, yet we show in our evaluation that it is large enough to mimic GPT-\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$-$$\end{document}3.5 on this task.
引用
收藏
相关论文
共 50 条
  • [21] Automatic source code summarization with graph attention networks
    Zhou, Yu
    Shen, Juanjuan
    Zhang, Xiaoqing
    Yang, Wenhua
    Han, Tingting
    Chen, Taolue
    [J]. JOURNAL OF SYSTEMS AND SOFTWARE, 2022, 188
  • [22] Evaluating Source Code Summarization Techniques: Replication and Expansion
    Eddy, Brian P.
    Robinson, Jeffrey A.
    Kraft, Nicholas A.
    Carver, Jeffrey C.
    [J]. 2013 IEEE 21ST INTERNATIONAL CONFERENCE ON PROGRAM COMPREHENSION (ICPC), 2013, : 13 - 22
  • [23] Retrieval-based Neural Source Code Summarization
    Zhang, Jian
    Wang, Xu
    Zhang, Hongyu
    Sun, Hailong
    Liu, Xudong
    [J]. 2020 ACM/IEEE 42ND INTERNATIONAL CONFERENCE ON SOFTWARE ENGINEERING (ICSE 2020), 2020, : 1385 - 1397
  • [24] Label Smoothing Improves Neural Source Code Summarization
    Haque, Sakib
    Bansal, Aakash
    McMillan, Collin
    [J]. 2023 IEEE/ACM 31ST INTERNATIONAL CONFERENCE ON PROGRAM COMPREHENSION, ICPC, 2023, : 101 - 112
  • [25] Naturalness in Source Code Summarization. How Significant is it?
    Ferretti, Claudio
    Saletta, Martina
    [J]. 2023 IEEE/ACM 31ST INTERNATIONAL CONFERENCE ON PROGRAM COMPREHENSION, ICPC, 2023, : 125 - 134
  • [26] Automatic Documentation Generation via Source Code Summarization
    McBurney, Paul W.
    [J]. 2015 IEEE/ACM 37TH IEEE INTERNATIONAL CONFERENCE ON SOFTWARE ENGINEERING, VOL 2, 2015, : 903 - 906
  • [27] Action Word Prediction for Neural Source Code Summarization
    Haque, Sakib
    Bansal, Aakash
    Wu, Lingfei
    McMillan, Collin
    [J]. 2021 IEEE INTERNATIONAL CONFERENCE ON SOFTWARE ANALYSIS, EVOLUTION AND REENGINEERING (SANER 2021), 2021, : 330 - 341
  • [28] Ensemble models for neural source code summarization of subroutines
    LeClair, Alexander
    Bansal, Aakash
    McMillan, Collin
    [J]. arXiv, 2021,
  • [29] Semantic Similarity Metrics for Evaluating Source Code Summarization
    Haque, Sakib
    Eberhart, Zachary
    Bansal, Aakash
    McMillan, Collin
    [J]. 30TH IEEE/ACM INTERNATIONAL CONFERENCE ON PROGRAM COMPREHENSION (ICPC 2022), 2022, : 36 - 47
  • [30] Semantic Similarity Metrics for Evaluating Source Code Summarization
    Haque, Sakib
    Eberhart, Zachary
    Bansal, Aakash
    McMillan, Collin
    [J]. IEEE International Conference on Program Comprehension, 2022, 2022-March : 36 - 47