Ground-based gamma-ray astronomy: history and development of techniques

被引:0
|
作者
D. Bose
V. R. Chitnis
P. Majumdar
B. S. Acharya
机构
[1] S. N. Bose National Centre for Basic Sciences,Department of Astrophysics and Cosmology
[2] Tata Institute of Fundamental Research,Department of High Energy Physics
[3] Saha Institute of Nuclear Physics,High Energy Nuclear and Particle Physics Division
[4] University of Lodz,Department of Astrophysics, Faculty of Physics and Applied Informatics
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Very high energy (VHE) γ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma $$\end{document}-rays constitute one of the main pillars of high energy astrophysics. Gamma-rays are produced under extreme relativistic conditions in the Universe. VHE γ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma $$\end{document}-rays can be detected indirectly on the ground. Detection of these energetic photons poses several technological challenges. First, even though γ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma $$\end{document}-rays are highly penetrative, the Earth’s atmosphere is opaque to them. Second, these γ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma $$\end{document}-rays are to be detected against the overwhelming background of cosmic rays. When a VHE γ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma $$\end{document}-ray arrives at the top of the atmosphere, it produces charged secondaries. These charged particles produce Cherenkov flashes in optical band. Even though first attempts to detect these Cherenkov flashes were made almost 70 years ago, it took several decades of relentless efforts to streamline the technique. Ground-based VHE γ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma $$\end{document}-ray astronomy has now established itself as one of the crucial branches of conventional high energy astronomy to study the relativistic Universe. In this article, we look back and present a historical perspective followed by a discussion on the current status and finally what lays ahead.
引用
收藏
页码:3 / 26
页数:23
相关论文
共 50 条
  • [21] Cherenkov Telescope Array - The Future of Ground-Based Gamma-Ray Astronomy
    Wagner, Robert
    TOPICS IN ASTROPARTICLE AND UNDERGROUND PHYSICS (TAUP2009), 2010, 203
  • [22] Gamma-ray astronomy with ground-based array detectors: status and perspectives
    Lorenz, E.
    Proceedings of the TeV Particle Astrophysics II Workshop, 2007, 60 : 1 - 7
  • [23] Status of ground-based gamma ray astronomy
    Hofmann, W
    HIGH ENERGY GAMMA-RAY ASTRONOMY, 2005, 745 : 246 - 259
  • [24] Ground-based detectors in very-high-energy gamma-ray astronomy
    de Naurois, Mathieu
    Mazin, Daniel
    COMPTES RENDUS PHYSIQUE, 2015, 16 (6-7) : 610 - 627
  • [26] The physics potential of ground-based gamma-ray astronomy below 50 GeV
    Magnussen, N
    GEV-TEV GAMMA RAY ASTROPHYSICS WORKSHOP, 2000, 515 : 431 - 435
  • [27] FACT: A Novel Camera for Cherenkov Telescopes for Ground-Based Gamma-Ray Astronomy
    Weitzel, Q.
    Anderhub, H.
    Backes, M.
    Biland, A.
    Boller, A.
    Braun, I.
    Bretz, T.
    Commichau, V.
    Djambazov, L.
    Dorner, D.
    Farnier, C.
    Gendotti, A.
    Grimm, O.
    von Gunten, H.
    Hildebrand, D.
    Horisberger, U.
    Huber, B.
    Kim, K. -S.
    Koehne, J. -H.
    Kraehenbuehl, T.
    Krumm, B.
    Lee, M.
    Lenain, J. -P.
    Lorenz, E.
    Lustermann, W.
    Lyard, E.
    Mannheim, K.
    Meharga, M.
    Neise, D.
    Nessi-Tedaldi, F.
    Overkemping, A-K.
    Pauss, F.
    Renker, D.
    Rhode, W.
    Ribordy, M.
    Rohlfs, R.
    Roeser, U.
    Stucki, J. -P.
    Schneider, J.
    Thaele, J.
    Tibolla, O.
    Viertel, G.
    Vogler, P.
    Walter, R.
    Warda, K.
    2011 IEEE NUCLEAR SCIENCE SYMPOSIUM AND MEDICAL IMAGING CONFERENCE (NSS/MIC), 2011, : 1857 - 1860
  • [28] Event-sequence time series analysis in ground-based gamma-ray astronomy
    de Almeida, U. Barres
    Chadwick, P.
    Daniel, M.
    Nolan, S.
    McComb, L.
    HIGH ENERGY GAMMA-RAY ASTRONOMY, 2009, 1085 : 775 - 778
  • [29] The history of gamma-ray astronomy
    Schönfelder, V
    ASTRONOMISCHE NACHRICHTEN, 2002, 323 (06) : 524 - 529
  • [30] The STACEE ground-based gamma-ray detector
    Gingrich, DM
    Boone, LM
    Bramel, D
    Carson, J
    Covault, CE
    Fortin, P
    Hanna, DS
    Hinton, JA
    Jarvis, A
    Kildea, J
    Lindner, T
    Mueller, C
    Mukherjee, R
    Ong, RA
    Ragan, K
    Scalzo, RA
    Théoret, CG
    Williams, DA
    Zweerink, JA
    IEEE TRANSACTIONS ON NUCLEAR SCIENCE, 2005, 52 (06) : 2977 - 2985