DMT1: A mammalian transporter for multiple metals

被引:0
|
作者
Michael D. Garrick
Kevin G. Dolan
Craig Horbinski
Andrew J. Ghio
Dennis Higgins
Michael Porubcin
Elizabeth G. Moore
Lucille N. Hainsworth
Jay N. Umbreit
Marcel E. Conrad
Lee Feng
Agnieska Lis
Jerome A. Roth
Stephen Singleton
Laura M. Garrick
机构
[1] Departments of Biochemistry,National Health and Environmental Effects Research Laboratory
[2] Pharmacology and Toxicology,USA Cancer Center
[3] Environmental Protection Agency,undefined
[4] University of South Alabama,undefined
来源
Biometals | 2003年 / 16卷
关键词
copper transport; DCT1; iron transport; manganese transport; Nramp2; SLC11A2;
D O I
暂无
中图分类号
学科分类号
摘要
DMT1 has four names, transports as many as eight metals, may have four or more isoforms and carries out its transport for multiple purposes. This review is a start at sorting out these multiplicities. A G185R mutation results in diminished gastrointestinal iron uptake and decreased endosomal iron exit in microcytic mice and Belgrade rats. Comparison of mutant to normal rodents is one analytical tool. Ectopic expression is another. Antibodies that distinguish the isoforms are also useful. Two mRNA isoforms differ in the 3′ UTR: +IRE DMT1 has an IRE (Iron Responsive Element) but -IRE DMT1 lacks this feature. The ±IRE proteins differ in the distal 18 or 25 amino acid residues after shared identity for the proximal 543 residues. A major function is serving as the apical iron transporter in the lumen of the gut. The +IRE isoform appears to have that role. Another role is endosomal exit of iron. Some evidence indicts the -IRE isoform for this function. In our ectopic expression assay for metal uptake, four metals – Fe2+, Mn2+, Ni2+ and Co2+ – respond to the normal DMT1 cDNA but not the G185 R mutant. Two metals did not – Cd2+ and Zn2+ – and two – Cu2+ and Pb2+–remain to be tested. In competition experiments in the same assay, Cd2+, Cu2+ and Pb2+ inhibit Mn2+ uptake but Zn2+ did not. In rodent mutants, Fe and Mn appear more dependent on DMT1 than Cu and Zn. Experiments based on ectopic expression, specific antibodies that inhibit metal uptake and labeling data indicate that Fe3+ uptake depends on a different pathway in multiple cells. Two isoforms localize differently in a number of cell types. Unexpectedly, the -IRE isoform is in the nuclei of cells with neuronal properties. While the function of -IRE DMT1 in the nucleus is speculative, one may safely infer that this localization identifies new role(s) for this multifunctional transporter. Management of toxic challenges is another function related to metal homeostasis. Airways represent a gateway tissue for metal entry. Preliminary evidence using specific PCR primers and antibodies specific to the two isoforms indicates that -IRE mRNA and protein increase in response to exposure to metal in lungs and in a cell culture model; the +IRE form is unresponsive. Thus the -IRE form could be part of a detoxification system in which +IRE DMT1 does not participate. How does iron status affect other metals' toxicity? In the case of Mn, iron deficiency may enhance cellular responses.
引用
收藏
页码:41 / 54
页数:13
相关论文
共 50 条
  • [21] A role for divalent metal transporter (DMT1) in mitochondrial uptake of iron and manganese
    Natascha A. Wolff 
    Michael D. Garrick
    Lin Zhao
    Laura M. Garrick
    Andrew J. Ghio
    Frank Thévenod
    [J]. Scientific Reports, 8
  • [22] Calcium interactions with divalent metal-ion transporter-1 (DMT1)
    Shawki, Ali
    Mackenzie, Bryan
    [J]. FASEB JOURNAL, 2010, 24
  • [23] Ndfip2 is a potential regulator of the iron transporter DMT1 in the liver
    Natalie J. Foot
    Kelly M. Gembus
    Kimberly Mackenzie
    Sharad Kumar
    [J]. Scientific Reports, 6
  • [24] A role for divalent metal transporter (DMT1) in mitochondrial uptake of iron and manganese
    Wolff, Natascha A.
    Garrick, Michael D.
    Zhao, Lin
    Garrick, Laura M.
    Ghio, Andrew J.
    Thevenod, Frank
    [J]. SCIENTIFIC REPORTS, 2018, 8
  • [25] Converting a transporter to a channel: A spontaneous mutation in DMT1 confers a gain of function
    Xu, HX
    Jie, J
    DeFelice, LJ
    Andrews, NC
    Clapham, DE
    [J]. BIOPHYSICAL JOURNAL, 2004, 86 (01) : 553A - 553A
  • [26] DMT1 and iron transport
    Yanatori, Izumi
    Kishi, Fumio
    [J]. FREE RADICAL BIOLOGY AND MEDICINE, 2019, 133 : 55 - 63
  • [27] Ndfip2 is a potential regulator of the iron transporter DMT1 in the liver
    Foot, Natalie J.
    Gembus, Kelly M.
    Mackenzie, Kimberly
    Kumar, Sharad
    [J]. SCIENTIFIC REPORTS, 2016, 6
  • [28] Intracellular trafficking of DMT1
    Burdo, JR
    Connor, JR
    [J]. MOLECULAR BIOLOGY OF THE CELL, 2001, 12 : 252A - 252A
  • [29] Duodenal Expression of the Iron Transporter DMT1 Is Increased in a Murine Model of Hereditary Hemochromatosis
    Robert E Fleming
    Mary C Migas
    Xiao Yan Zhou
    Robert S Britton
    Elizabeth M Brunt
    Shunji Tomatsu
    Abdul Waheed
    Bruce R Bacon
    William S Sly
    [J]. Pediatric Research, 1999, 45 : 138 - 138
  • [30] Copper Transport by Divalent Metal Transporter 1 (Dmt1) Under Low Iron Conditions
    Jiang, Lingli
    Collins, James F.
    [J]. FASEB JOURNAL, 2012, 26