Lightweight image super-resolution network using involution

被引:0
|
作者
Jiu Liang
Yu Zhang
Jiangbo Xue
Yu Zhang
Yanda Hu
机构
[1] Shaanxi Normal University,School of Computer Science
来源
关键词
Super-resolution; Lightweight; Involution; Self-attention;
D O I
暂无
中图分类号
学科分类号
摘要
Recently, the single image super-resolution methods with deep and complex convolutional neural network structures have achieved remarkable performance. However, those approaches improve the performance at the cost of higher memory occupation, which are difficult to be applied for some resource-constrained devices. With the goal of minimizing parameters, an effective and efficient operator named involution is introduced in our proposed model, delivering enhanced performance at reduced cost compared to convolution-based counterparts. On the basis of involution, we propose two building blocks named RMFDB(Residual Mixed Feature Distillation Block) and CICB(Conv-Invo-Conv Block) for the main module and the reconstruction module respectively. RMFDB has the similar structure as the RFDB but with our involution layers. This block is much more lightweight and efficient than conventional convolution-based blocks. CICB combines the nearest-neighbor upsampling, convolution and involution layers. The final reconstruction quality is improved with little parameter cost. Experimental results demonstrate the effectiveness of the proposed model against the state-of-the-art (SOTA) SR methods. Our final model could achieve similar performance as the lightweight networks RFDN and PAN, but with only 224K parameters and 64.2G Multi-Adds with the scale factor of 2. The effectiveness of each proposed components is also validated by ablation study.
引用
收藏
相关论文
共 50 条
  • [31] A Hybrid Network of CNN and Transformer for Lightweight Image Super-Resolution
    Fang, Jinsheng
    Lin, Hanjiang
    Chen, Xinyu
    Zeng, Kun
    2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION WORKSHOPS, CVPRW 2022, 2022, : 1102 - 1111
  • [32] Lightweight image super-resolution with the adaptive weight learning network
    Zhang Y.
    Cheng P.
    Zhang S.
    Wang X.
    Xi'an Dianzi Keji Daxue Xuebao/Journal of Xidian University, 2021, 48 (05): : 15 - 22
  • [33] Lightweight image super-resolution with a feature-refined network
    Liu, Feiqiang
    Yang, Xiaomin
    De Baets, Bernard
    SIGNAL PROCESSING-IMAGE COMMUNICATION, 2023, 111
  • [34] Partial convolutional reparameterization network for lightweight image super-resolution
    Zhang, Long
    Wan, Yi
    JOURNAL OF REAL-TIME IMAGE PROCESSING, 2024, 21 (06)
  • [35] Lightweight Progressive Residual Clique Network for Image Super-Resolution
    Huang, Baojin
    He, Zheng
    Wang, Zhongyuan
    Jiang, Kui
    Wang, Guangcheng
    2020 IEEE 32ND INTERNATIONAL CONFERENCE ON TOOLS WITH ARTIFICIAL INTELLIGENCE (ICTAI), 2020, : 767 - 772
  • [36] A Residual Network with Efficient Transformer for Lightweight Image Super-Resolution
    Yan, Fengqi
    Li, Shaokun
    Zhou, Zhiguo
    Shi, Yonggang
    ELECTRONICS, 2024, 13 (01)
  • [37] A lightweight generative adversarial network for single image super-resolution
    Xinbiao Lu
    Xupeng Xie
    Chunlin Ye
    Hao Xing
    Zecheng Liu
    Changchun Cai
    The Visual Computer, 2024, 40 : 41 - 52
  • [38] Lightweight and Accurate Recursive Fractal Network for Image Super-Resolution
    Li, Juncheng
    Yuan, Yiting
    Mei, Kangfu
    Fang, Faming
    2019 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION WORKSHOPS (ICCVW), 2019, : 3814 - 3823
  • [39] Reparameterizable Multibranch Bottleneck Network for Lightweight Image Super-Resolution
    Shen, Ying
    Zheng, Weihuang
    Huang, Feng
    Wu, Jing
    Chen, Liqiong
    SENSORS, 2023, 23 (08)
  • [40] Lightweight Attention-Guided Network for Image Super-Resolution
    Ding, Zixuan
    Juan, Zhang
    Xiang, Li
    Wang, Xinyu
    LASER & OPTOELECTRONICS PROGRESS, 2023, 60 (14)