Some remarks on stability of cones for the one-phase free boundary problem

被引:0
|
作者
David Jerison
Ovidiu Savin
机构
[1] Department of Mathematics,Department of Mathematics
[2] Columbia University,undefined
来源
关键词
Free Boundary; Minimal Surface; Free Boundary Problem; Stable Cone; Strict Subsolution;
D O I
暂无
中图分类号
学科分类号
摘要
We show that stable cones for the one-phase free boundary problem are hyperplanes in dimension 4. As a corollary, both one and two-phase energy minimizing hypersurfaces are smooth in dimension 4.
引用
收藏
页码:1240 / 1257
页数:17
相关论文
共 50 条
  • [1] Some remarks on stability of cones for the one-phase free boundary problem
    Jerison, David
    Savin, Ovidiu
    [J]. GEOMETRIC AND FUNCTIONAL ANALYSIS, 2015, 25 (04) : 1240 - 1257
  • [2] ON A ONE-PHASE FREE BOUNDARY PROBLEM
    Avelin, Benny
    [J]. ANNALES ACADEMIAE SCIENTIARUM FENNICAE-MATHEMATICA, 2013, 38 (01) : 181 - 191
  • [3] Boundary regularity for the free boundary in the one-phase problem
    Chang-Lara, Hector
    Savin, Ovidiu
    [J]. NEW DEVELOPMENTS IN THE ANALYSIS OF NONLOCAL OPERATORS, 2019, 723 : 149 - 165
  • [4] Local solvability of a one-phase problem with free boundary
    Selivanova N.Y.
    Shamolin M.V.
    [J]. Journal of Mathematical Sciences, 2013, 189 (2) : 274 - 283
  • [5] Minimizers for the Thin One-Phase Free Boundary Problem
    Engelstein, Max
    Kauranen, Aapo
    Prats, Marti
    Sakellaris, Georgios
    Sire, Yannick
    [J]. COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2021, 74 (09) : 1971 - 2022
  • [6] Almost minimizers of the one-phase free boundary problem
    De Silva, D.
    Savin, O.
    [J]. COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2020, 45 (08) : 913 - 930
  • [7] Stable cones in the thin one-phase problem
    Fernandez-Real, Xavier
    Ros-Oton, Xavier
    [J]. AMERICAN JOURNAL OF MATHEMATICS, 2024, 146 (03)
  • [8] Nondegeneracy for stable solutions to the one-phase free boundary problem
    Nikola Kamburov
    Kelei Wang
    [J]. Mathematische Annalen, 2024, 388 : 2705 - 2726
  • [9] Nondegeneracy for stable solutions to the one-phase free boundary problem
    Kamburov, Nikola
    Wang, Kelei
    [J]. MATHEMATISCHE ANNALEN, 2024, 388 (03) : 2573 - 2610
  • [10] One-phase parabolic free boundary problem in a convex ring
    M. Poghosyan
    R. Teymurazyan
    [J]. Journal of Contemporary Mathematical Analysis, 2009, 44 : 192 - 204